Advertisement

Bubble Trouble: Strategies Against Filter Bubbles in Online Social Networks

  • Laura BurbachEmail author
  • Patrick Halbach
  • Martina Ziefle
  • André Calero Valdez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11582)

Abstract

In the recent past, some electoral decisions have gone against the pre-election expectations, what led to greater emphasis on social networking in the creation of filter bubbles. In this article, we examine whether Facebook usage motives, personality traits of Facebook users, and awareness of the filter bubble phenomenon influence whether and how Facebook users take action against filter bubbles. To answer these questions we conducted an online survey with 149 participants in Germany. While we found out that in our sample, the motives for using Facebook and the awareness of the filter bubble have an influence on whether a person consciously takes action against the filter bubble, we found no influence of personality traits. The results show that Facebook users know for the most part that filter bubbles exist, but still do little about them. Therefore it can be concluded that in today’s digital age, it is important not only to inform users about the existence of filter bubbles, but also about various possible strategies for dealing with them.

Keywords

Filter bubble Echo chamber Avoidance strategies Big Five Facebook usage motives 

Notes

Acknowledgements

The authors would like to thank Nils Plettenberg and Johannes Nakayama for their help in improving this article. We would like to thank Nora Ehrhardt and Marion Wießmann for their support in this study. This research was supported by the Digital Society research program funded by the Ministry of Culture and Science of the German State of North Rhine-Westphalia.

References

  1. 1.
    Van Aelst, P., et al.: Political communication in a high-choice media environment: a challenge for democracy? Ann. Int. Commun. Assoc. 41(1), 3–27 (2017)Google Scholar
  2. 2.
    Allcott, H., Gentzkow, M.: Social media and fake news in the 2016 election. J. Econ. Perspect. 31(2), 211–236 (2017)Google Scholar
  3. 3.
    Azucar, D., Marengo, D., Settanni, M.: Predicting the big 5 personality traits from digital footprints on social media: a meta-analysis. Pers. Individ. Differ. 124, 150–159 (2018)Google Scholar
  4. 4.
    Bakshy, E., Messing, S., Adamic, L.A.: Exposure to ideologically diverse news and opinion on Facebook. Science 348(6239), 1130–1132 (2008)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Bakshy, E., et al.: The role of social networks in information diffusion. In: Proceedings of the 21st International Conference on World Wide Web, pp. 519–528 (2012)Google Scholar
  6. 6.
    Barberá, P., et al.: Tweeting from left to right: is online political communication more than an echo chamber? Psychol. Sci. 26(10), 1531–1542 (2015)MathSciNetGoogle Scholar
  7. 7.
    Beam, M.A.: Automating the news: how personalized news recommender system design choices impact news reception. Commun. Res. 41(8), 1019–1041 (2014)Google Scholar
  8. 8.
    Beam, M.A., et al.: Facebook news and (de)polarization: reinforcing spirals in the 2016 US election. Inf. Commun. Soc. 21(7), 940–958 (2018)Google Scholar
  9. 9.
    Bellogin, A., Cantador, I., Castells, P.: A comparative study of heterogeneous item recommendations in social systems. Inf. Sci. 221, 142–169 (2013)MathSciNetGoogle Scholar
  10. 10.
    Zuiderveen Borgesius, F.G., et al.: Should we worry about filter bubbles? https://policyreview.info/articles/analysis/should-we-worryabout-filter-bubbles. Accessed 26 Feb 2019
  11. 11.
    Bozdag, E., van den Hoven, J.: Breaking the filter bubble: democracy and design. Ethics Inf. Technol. 17(4), 249–265 (2015)Google Scholar
  12. 12.
    Jonathan, B.: Explaining the emergence of political fragmentation on social media: the role of ideology and extremism. J. Comput. Mediat. Commun. 23(1), 17–33 (2018)Google Scholar
  13. 13.
    Calero Valdez, A., Burbach, L., Ziefle, M.: Political opinions of us and them and the influence of digital media usage. In: Meiselwitz, G. (ed.) SCSM 2018. LNCS, vol. 10913, pp. 189–202. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-91521-0_15Google Scholar
  14. 14.
    Colleoni, E., Rozza, A., Arvidsson, A.: Echo chamber or public sphere? Predicting political orientation and measuring political homophily in twitter using big data. J. Commun. 64(2), 317–332 (2014)Google Scholar
  15. 15.
    Conover, M.D., et al.: Political polarization on Twitter. In: Fifth International Conference on Weblogs and Social media (ICWSM), pp. 89–96 (2011)Google Scholar
  16. 16.
    Cumming, G.: The new statistics: why and how. Psychol. Sci. 25(1), 7–29 (2014)Google Scholar
  17. 17.
    De Raad, B.: The Big Five Personality Factors: The Psycholexical Approach to Personality. Hogrefe & Huber Publishers, Göttingen (2000)Google Scholar
  18. 18.
    DiFranzo, D.J., Gloria-Garcia, K.: Filter bubbles and fake news. XRDS: Crossroads ACM Mag. Stud. 23(3), 32–35 (2017)Google Scholar
  19. 19.
    Dubois, E., Blank, G.: The echo chamber is overstated: the moderating effect of political interest and diverse media. Inf. Commun. Soc. 21(5), 729–745 (2018)Google Scholar
  20. 20.
    Dylko, I., et al.: The dark side of technology: an experimental investigation of the influence of customizability technology on online political selective exposure. Comput. Hum. Behav. 73, 181–190 (2017)Google Scholar
  21. 21.
    Efron, M.: Using cocitation information to estimate political orientation in web documents. Knowl. Inf. Syst. 9(4), 492–511 (2006)MathSciNetGoogle Scholar
  22. 22.
    Epstein, R., Robertson, R.E.: The search engine manipulation effect (SEME) and its possible impact on the outcomes of elections. Proc. Nat. Acad. Sci. 112(33), E4512–E4521 (2015)Google Scholar
  23. 23.
    Eslami, M., et al.: I always assumed that i wasn’t really that close to [her]: reasoning about invisible algorithms in news feeds. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pp. 153–162 (2015)Google Scholar
  24. 24.
    Flaxman, S.R., Goel, S., Rao, J.M.: Filter bubbles, echo chambers, and online news consumption. Public Opin. Q. 80(S1), 298–320 (2016)Google Scholar
  25. 25.
    Fletcher, R., Nielsen, R.K.: Are news audiences increasingly fragmented? A cross-national comparative analysis of cross-platform news audience fragmentation and duplication. J. Commun. 67(4), 476–498 (2017)Google Scholar
  26. 26.
    Garrett, R.K.: Echo chambers online? Politically motivated selective exposure among internet news users. J. Comput.-Mediat. Commun. 14(2), 265–285 (2009)MathSciNetGoogle Scholar
  27. 27.
    Goel, S., Mason, W., Watts, D.J.: Real and perceived attitude agreement in social networks. J. Pers. Soc. Psychol. 99(4), 611–621 (2010)Google Scholar
  28. 28.
    Goldberg, L.R.: An alternative “description of personality": the big-five factor structure. J. Pers. Soc. Psychol. 59, 1216–1229 (1990)Google Scholar
  29. 29.
    Goldman, E.: Search engine bias and the demise of search engine utopianism. In: Spink, A., Zimmer, M. (eds.) Web Search: Multidisciplinary Perspectives. ISKM, vol. 14, pp. 121–133. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-75829-7_8Google Scholar
  30. 30.
    González, R.J.: Hacking the citizenry? Personality profiling, ‘big data’ and the election of Donald Trump. Comput. Human Behav. 33(3), 9–12 (2017)Google Scholar
  31. 31.
    Helberger, N., Karppinen, K., D’Acunto, L.: Exposure diversity as a design principle for recommender systems. Inf. Commun. Soc. 21(2), 191–207 (2018)Google Scholar
  32. 32.
    Hoang, V.T., et al.: Domain-specific queries and Web search personalization: some investigations. In: Proceedings of the 11th International Workshop on Automated Specification and Verification of Web Systems (2015)Google Scholar
  33. 33.
    Introna, L.D., Nissenbaum, H.: Shaping the web: why the politics of search engines matters. Inf. Soc. 16(3), 169–185 (2000)Google Scholar
  34. 34.
    John, O.P., Naumann, L.P., Soto, C.J.: Paradigm shift to the integrative big-five trait taxonomy: history, measurement, and conceptual issues. In: John, O.P., Robins, R.W., Pervin, L.A. (eds.) Handbook of Personality: Theory and Research, pp. 114–158. Guilford Press, New York (2008)Google Scholar
  35. 35.
    Kaplan, A.M., Haenlein, M.: Users of the world, unite! The challenges and opportunities of social media. Bus. Horiz. 53(1), 59–68 (2010)Google Scholar
  36. 36.
    Karlsen, R., et al.: Echo chamber and trench warfare dynamics in online debates. Eur. J. Commun. 32(3), 257–273 (2018)Google Scholar
  37. 37.
    Kobayashi, T., Ikeda, K.: Selective exposure in political web browsing: empirical verification of ‘cyber-balkanization’ in Japan and the USA. Inf. Commun. Soc. 12(6), 929–953 (2009)Google Scholar
  38. 38.
    Koene, A., et al.: Ethics of personalized information filtering. In: Tiropanis, T., Vakali, A., Sartori, L., Burnap, P. (eds.) INSCI 2015. LNCS, vol. 9089, pp. 123–132. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-18609-2_10Google Scholar
  39. 39.
    Kosinski, M., Stillwell, D., Graepel, T.: Private traits and attributes are predictable from digital records of human behavior. Proc. Nat. Acad. Sci. 110(15), 5802–5805 (2013)Google Scholar
  40. 40.
    Leese, M.: The new profiling: algorithms, black boxes, and the failure of anti-discriminatory safeguards in the European Union. Secur. Dialogue 45(5), 494–511 (2014)Google Scholar
  41. 41.
    Macnish, K.: Unblinking eyes: the ethics of automating surveillance. Ethics Inf. Technol. 14(2), 151–167 (2012)Google Scholar
  42. 42.
    McCombs, M.E., Shaw, D.L.: The agenda-setting function of mass media. Public Opin. 36(2), 41–46 (1972)Google Scholar
  43. 43.
    Mitchell, A., et al.: Political polarization and media habits (2014). http://www.journalism.org/2014/10/21/political-polarizationmedia-habits/
  44. 44.
    Munson, S.A., Lee, S.L, Resnick, P.: Encouraging reading of diverse political viewpoints with a browser widget. In: International Conference on Weblogs and Social Media (ICWSM) (2013)Google Scholar
  45. 45.
    Nagulendra, S., Vassileva, J.: Providing awareness, explanation and control of personalized filtering in a social networking site. Inf. Syst. Front. 18(1), 145–158 (2016)Google Scholar
  46. 46.
    Pariser, E.: The Filter Bubble: What the Internet Is Hiding from You. Penguin, London (2011)Google Scholar
  47. 47.
    Portugal, I., Alencar, P., Cowan, D.: The use of machine learning algorithms in recommender systems: a systematic review. Expert Syst. Appl. 97, 205–227 (2018)Google Scholar
  48. 48.
    Rader, E., Gray, R.: Understanding user beliefs about algorithmic curation in the Facebook news feed. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, CHI 2015, pp. 173–182 (2015)Google Scholar
  49. 49.
    Rammstedt, B., et al.: A short scale for assesing the big five dimensions of personality: 10 item big five inventory (BFI-10). Methoden Daten Anal. 7(2), 233–249 (2013)Google Scholar
  50. 50.
    Resnick, P., et al.: Bursting your (filter) bubble: strategies for promoting diverse exposure. In: Proceedings of the Conference on Computer Supported Cooperative Work Companion, CSCW 2013, pp. 95–100 (2013)Google Scholar
  51. 51.
    Sandvig, C., et al.: Auditing algorithms: research methods for detecting discrimination on internet platforms (2018)Google Scholar
  52. 52.
    Stroud, N.J.: Media use and political predispositions: revisiting the concept of selective exposure. Polit. Behav. 30(3), 341–366 (2008)Google Scholar
  53. 53.
    Sunstein, C.: # Republic: Divided Democracy in the Age of Social Media. Princeton University Press, Princeton (2017)Google Scholar
  54. 54.
    Trilling, D., van Klingeren, M., Tsfati, Y.: Selective exposure, political polarization, and possible mediators: evidence from The Netherlands. J. Public Opin. Res. 29(2), 189–213 (2016)Google Scholar
  55. 55.
    Yom-Tov, E., Dumais, S., Guo, Q.: Promoting civil discourse through search engine diversity. Soc. Sci. Comput. Rev. 32(2), 145–154 (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Human-Computer Interaction CenterRWTH Aachen UniversityAachenGermany

Personalised recommendations