Advertisement

Human-Robot Interaction in Health Care Automation

  • Sumona SenEmail author
  • Lisanne Kremer
  • Hans Buxbaum
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11582)

Abstract

Robot-based assistance systems are widely utilized in industrial production today. In the near future, the numbers of applications in private households as well as in health care are also expected to grow. Such systems need to act and react autonomously, to cooperate and to perform supportive functions. This paper starts with the description of a project of a specially developed humanoid care robot and focusses on the lessons learned from this project. Afterwards, concepts and ideas of industrial human-robot interaction will be presented and discussed with regard to the special requirements in health care automation, such as safety and human factors. Finally, a new full-scope simulation system will be introduced, which should allow experiments on Situation Awareness and usability with experiments with probands under constant environmental conditions.

Keywords

Health care automation Human-robot interaction Full-scope simulation Situation Awareness 

References

  1. 1.
    Fervers, A., Esper, M.: Dokumentation Humanoider Roboter RHONI. Projektbericht. University of Applied Sciences Niederrhein, Krefeld, Germany (2016)Google Scholar
  2. 2.
    Hoffmann, L.: That robot touch that means so much: on the psychological effects of human-robot touch. Ph.D.-Thesis, University of Duisburg-Essen, Germany (2017)Google Scholar
  3. 3.
    Buxbaum, H., Sen, S.: Kollaborierende Roboter in der Pflege – Sicherheit in der Mensch-Maschine-Schnittstelle. In: Bendel, O. (ed.) Pflegeroboter, pp. 1–22. Springer, Wiesbaden (2018).  https://doi.org/10.1007/978-3-658-22698-5_1CrossRefGoogle Scholar
  4. 4.
    Weidner, R., Redlich, T., Wulfsberg, J.P.: Technische Unterstützungssysteme. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48383-1CrossRefGoogle Scholar
  5. 5.
    Onnasch, L., Maier, X., Jürgensohn, T.: Mensch-Roboter-Interaktion - Eine Taxonomie für alle Anwendungsfälle. Bundesanstalt für Arbeitsschutz und Arbeitsmedizin (BAuA), Dortmund (2016)Google Scholar
  6. 6.
    Spillner, R.: Einsatz und Planung von Roboterassistenz zur Berücksichtigung von Leistungswandlungen in der Produktion. Herbert Utz Verlag München (2014)Google Scholar
  7. 7.
    Sorell, T., Draper, H.: Robot carers, ethics, and older people. Ethics Inf. Technol. 16(3), 183–195 (2014)CrossRefGoogle Scholar
  8. 8.
    Sen, S., Kunz, S.: Human Factor in der Mensch-Roboter-Zusammenarbeit. Bundesanstalt für Arbeitsschutz und Arbeitsmedizin (BAuA) - Posterpräsentation, Dortmund (2017)Google Scholar
  9. 9.
    Buxbaum, H., Kleutges, M., Sen, S.: Full-scope simulation of human-robot interaction in manufacturing systems. In: Proceedings of the 51st Winter Simulation Conference, Gothenburg, Sweden (2018)Google Scholar
  10. 10.
    Licence-Document-1093: Requirements for the full scope operator training simulator at Koeberg nuclear power station. National Nuclear Regulator (2006)Google Scholar
  11. 11.
    Tavira-Mondragon, J., Cruz-Cruz, R.: Development of power plant simulators and their application in an operators training center. In: Ao, S.I., Amouzegar, M., Rieger, B. (eds.) Intelligent Automation and Systems Engineering. LNCS, vol. 103, pp. 243–255. Springer, New York (2011).  https://doi.org/10.1007/978-1-4614-0373-9_19CrossRefGoogle Scholar
  12. 12.
    Czaja, S.J., Nair, S.N.: Human Factors Engineering and Systems Design. In: Salvendy, G. (ed.) Handbook of Human Factors and Ergonomics, 4th edn, pp. 38–56. Wiley, Hoboken (2012)CrossRefGoogle Scholar
  13. 13.
    Badke-Schaub, P., Hofinger, G., Lauche, K.: Human Factors - Psychologie sicheren Handelns in Risikobranchen. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-19886-1CrossRefGoogle Scholar
  14. 14.
    Wenninger, G.: Arbeitssicherheit und Gesundheit: Psychologisches Grundwissen für betriebliche Sicherheitsexperten und Führungskräfte. Asanger Verlag (1991)Google Scholar
  15. 15.
    Endsley, M.R.: Design and evaluation for situation awareness enhancement. In: Proceedings of the Human Factors Society 32nd Annual Meeting, vol. 32, pp. 97–101 (1988)Google Scholar
  16. 16.
    Endsley, M.R., Kiris, E.O.: Situation awareness global assessment technique (SAGAT) TRACON air traffic control version user’s guide. Texas Tech University Press, Lubbock (1995)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Robotics and Human Engineering LabNiederrhein University of Applied SciencesKrefeldGermany

Personalised recommendations