Skip to main content

Laser-Driven Ion Acceleration Using Truly Isolated Micro-sphere Targets

  • Chapter
  • First Online:
Relativistically Intense Laser–Microplasma Interactions

Part of the book series: Springer Theses ((Springer Theses))

  • 273 Accesses

Abstract

While laser-plasma interactions at lower intensities with spherical targets are reasonably well understood (e.g. [1, 2]), only few experimental approaches have been made at laser-intensities of \(a_0\gg 1\) to study their dynamics. As pointed out in the introduction, approaches were performed with cluster-targets in the 100 nm range and droplet targets in the several \(\upmu \)m range.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the following calculations and examples, we evaluate and refer to proton sound velocities. Note however, that in comparison the sound velocity for fully charged carbon ions reduces only by a factor \(1/\sqrt{2}\) which was found to barely influence these considerations—which are based on estimates anyway.

  2. 2.

    Assuming a peak intensity of \(10^{20}\) W/cm\(^2\), ASE level of \(10^{-8}\) and ASE duration of 10 ns, the energy absorbed in a particle with radius 250 nm will range in the 10 \(\upmu \)J level, equivalent to about 10 keV average energy per particle.

  3. 3.

    My contribution: I initiated the experiment writing the corresponding proposal, planned the experiment and logistics, executed the setup and experiment as principle investigator. I supervised the team of 5 scientists (not counting TPW-staff), and organized the daily shot-plan. I performed the data analysis and interpretation.

  4. 4.

    This subsection is reproduced with minor variations and with permission from the original peer-reviewed article: T. M. Ostermayr et al., Physical Review E, 94(3):033208, (2016). The article is published by the American Physical Society and licensed under a Creative Commons Attribution 3.0 International License.

  5. 5.

    The experiment leader of this campaign was Peter Hilz, to whom I served as deputy. As such, I participated in experiment planning, setup and conducting the experiment. All data was evaluated and interpreted by Peter Hilz, and represents the core of his PhD thesis. Here, this data is shown, as it completes the picture obtained from the use of isolated targets for ion acceleration. Figures 5.23 and 5.24 are reproduced with permission from the original peer-reviewed article: P. Hilz et al., “Isolated proton bunch acceleration by a petawatt laser pulse”, Nature Communications, 9:423, (2018). The article is published by Nature Communications (Springer Nature) and licensed under a Creative Commons Attribution 4.0 International License.

  6. 6.

    This PIC simulation was performed and analyzed by A. Hübl, M. Bussmann, T. Kluge and U. Schramm from HZDR Dresden in close collaboration with P. Hilz, and is part of [55].

References

  1. Ditmire T et al (1996) Interaction of intense laser pulses with atomic clusters. Phys Rev A 53:3379–3402

    Article  ADS  Google Scholar 

  2. Ditmire T et al (1997) High-energy ions produced in explosions of superheated atomic clusters. Nature 386(6620):54–56

    Article  ADS  Google Scholar 

  3. Göde S et al (2017) Relativistic electron streaming instabilities modulate proton beams accelerated in laser-plasma interactions. Phys Rev Lett 118:194801

    Article  ADS  Google Scholar 

  4. Weibel ES (1959) Spontaneously growing transverse waves in a plasma due to an anisotropic velocity distribution. Phys Rev Lett 2:83–84

    Article  ADS  Google Scholar 

  5. Murakami M et al (2005) Ion energy spectrum of expanding laser-plasma with limited mass. Phys Plasmas 12(6):062706

    Article  ADS  Google Scholar 

  6. Kovalev VF, Bychenkov VY (2003) Analytic solutions to the Vlasov equations for expanding plasmas. Phys Rev Lett 90(18)

    Google Scholar 

  7. Dorozhkina DS, Semenov VE (1998) Exact solution of Vlasov equations for quasineutral expansion of plasma bunch into vacuum. Phys Rev Lett 81(13):2691

    Article  ADS  Google Scholar 

  8. Popov KI et al (2009) Vacuum electron acceleration by tightly focused laser pulses with nanoscale targets. Phys Plasmas 16(5):053106

    Article  ADS  Google Scholar 

  9. Popov K (2009) Laser based acceleration of charged particles. PhD thesis. University of Alberta

    Google Scholar 

  10. Peano F, Fonseca RA, Silva LO (2005) Dynamics and control of shock shells in the coulomb explosion of very large deuterium clusters. Phys Rev Lett 94:033401

    Article  ADS  Google Scholar 

  11. Kaplan AE, Dubetsky BY, Shkolnikov PL (2003) Shock shells in coulomb explosions of nanoclusters. Phys Rev Lett 91:14

    Article  Google Scholar 

  12. Sylla F (2011) Ion acceleration from laser-plasma interaction in underdense to near-critical regime: wakefield effects and associated plasma structures. PhD thesis. Ecole Polytechnique X

    Google Scholar 

  13. Peano F et al (2007) Ergodic model for the expansion of spherical nanoplasmas. Phys Rev E 75(6)

    Google Scholar 

  14. Murakami M, Basko MM (2006) Self-similar expansion of finite-size non-quasi-neutral plasmas into vacuum: Relation to the problem of ion acceleration. Phys Plasmas 13:012105

    Article  ADS  Google Scholar 

  15. Sakabe S (2004) et al Generation of high-energy protons from the Coulomb explosion of hydrogen clusters by intense femtosecond laser pulses. Phys Rev A 69(2)

    Google Scholar 

  16. Esirkepov T et al (2004) Highly efficient relativistic-ion generation in the laser-piston regime. Phys Rev Lett 92(17):175003

    Article  ADS  Google Scholar 

  17. Henig A (2010) Advanced approaches to high intensity laser-driven ion acceleration. PhD thesis. Ludwig-Maximilians-Universität, München

    Google Scholar 

  18. Limpouch J et al (2008) Enhanced laser ion acceleration from mass-limited targets. Laser Part Beams 26(02):225–234

    Article  ADS  Google Scholar 

  19. Yu Bychenkov V, Kovalev VF (2005) Coulomb explosion in a cluster plasma. Plasma Phys Rep 31(2):178–183

    Article  ADS  Google Scholar 

  20. Wei Yu et al (2005) Direct acceleration of solid-density plasma bunch by ultraintense laser. Phys Rev E 72(4):046401

    Article  ADS  Google Scholar 

  21. Ter-Avetisyan S et al (2012) Generation of a quasi-monoergetic proton beam from laser-irradiated sub-micron droplets. Phys Plasmas 19(7):073112

    Article  ADS  Google Scholar 

  22. Kluge T et al (2010) Enhanced laser ion acceleration from mass-limited foils. Phys Plasmas 17(12):123103

    Article  ADS  Google Scholar 

  23. Henig A et al (2009) Enhanced laser-driven ion acceleration in the relativistic transparency regime. Phys Rev Lett 103(4):045002

    Article  ADS  Google Scholar 

  24. Yin L et al (2011) Break-out afterburner ion acceleration in the longer laser pulse length regime. Phys Plasmas 18:063103

    Article  ADS  Google Scholar 

  25. Jung D (2012) Ion acceleration from relativistic laser nano-target interaction. PhD thesis. Ludwig-Maximilians-Universität, München

    Google Scholar 

  26. Kiefer D (2012) Relativistic electron mirrors from high intensity laser nanofoil interactions. PhD thesis

    Google Scholar 

  27. Henig A et al (2009) laser-driven shock acceleration of ion beams from spherical mass-limited targets. Phys Rev Lett 102(9):095002

    Article  ADS  Google Scholar 

  28. Sokollik T et al Directional laser-driven ion acceleration from microspheres. Phys Rev Lett 103:135003

    Google Scholar 

  29. Marx G (1966) Interstellar vehicle propelled by terrestrial laser beam. Nature 211:22

    Article  ADS  Google Scholar 

  30. Redding JL (1967) Interstellar vehicle propelled by terrestrial laser beam. Nature 213:588

    Article  ADS  Google Scholar 

  31. Simmons JFL, McInnes CR (1993) Was Marx right? Or how efficient are laser driven interstellar spacecraft? Am J Phys 61(3):205

    Article  ADS  Google Scholar 

  32. Breakthrough Initiative Starshot. https://breakthroughinitiatives.org/Research/3. Accessed 14 Nov 2017

  33. Murakami M, Tanaka M (2008) Nanocluster explosions and quasimonoenergetic spectra by homogeneously distributed impurity ions. Phys Plasmas 15:082702

    Article  ADS  Google Scholar 

  34. Popov KI et al (2010) A detailed study of collisionless explosion of single- and two-ion-species spherical nanoplasmas. Phys Plasmas 17:083110

    Article  ADS  Google Scholar 

  35. Ter-Avetisyan S et al (2006) Quasimonoenergetic deuteron bursts produced by ultraintense laser pulses. Phys Rev Lett 96(14):145006

    Article  ADS  Google Scholar 

  36. Sokollik T et al (2010) Laser-driven ion acceleration using isolated mass-limited spheres. New J Phys 12(11):113013

    Article  Google Scholar 

  37. Tskhakaya D et al (2007) The particle-in-cell method. Contrib Plasma Phys 47(8–9):563–594

    Article  ADS  Google Scholar 

  38. Ruhl H et al (2016) Plasma simulation code. http://www.plasma-simulation-code.net, http://fishercat.sr.unh.edu/psc/index.html. Accessed 25 Feb 2016

  39. Pauw V et al (2016) Particle-in-cell simulation of laser irradiated two component microspheres in 2 and 3 dimensions. In: 2nd European advanced accelerator concepts workshop—fEAACg 2015 nuclear instruments and methods in physics research section a: accelerators, spectrometers, detectors and associated equipment, vol 829, pp 372–375

    Article  ADS  Google Scholar 

  40. Rivas DE et al (2017) Next generation driver for attosecond and laser-plasma physics. Sci Rep 7(1)

    Google Scholar 

  41. Cardenas DE (2017) PhD thesis. Ludwig-Maximilians-Universitüt München

    Google Scholar 

  42. Cardenas DE et al (2017) Relativistic nanophotonics in the sub-cycle regime. In: Submitted manuscript

    Google Scholar 

  43. Kar S et al (2012) Ion acceleration in multispecies targets driven by intense laser radiation pressure. Phys Rev Lett 109:18

    Article  Google Scholar 

  44. Dover NP et al (2016) Buffered high charge spectrally-peaked proton beams in the relativistic-transparency regime. New J Phys 18(1):013038

    MathSciNet  Google Scholar 

  45. Steinke S et al (2013) Stable laser-ion acceleration in the light sail regime. Phys Rev Special Topics Accel Beams 16(1):011303

    Article  ADS  Google Scholar 

  46. Ostermayr TM et al (2016) Proton acceleration by irradiation of isolated spheres with an intense laser pulse. Phys Rev E 94(3):033208

    Article  ADS  Google Scholar 

  47. Microparticles GmbH, Berlin. http://www.microparticles-shop.de. Revisited 30 Jun 2017

  48. Kovalev VF, Yu Bychenkov V, Tikhonchuk VT (2002) Particle dynamics during adiabatic expansion of a plasma bunch. J Exper Theor Phys 95(2):226–241

    Article  ADS  Google Scholar 

  49. Wilks SC et al (1992) Absorption of ultra-intense laser pulses. Phys Rev Lett 69:1383–1386

    Article  ADS  Google Scholar 

  50. Robinson APL et al (2009) Relativistically correct hole-boring and ion acceleration by circularly polarized laser pulses. Plasma Phys Controll Fusion 51(2):024004

    Article  ADS  Google Scholar 

  51. Schlegel T et al (2009) Relativistic laser piston model: ponderomotive ion acceleration in dense plasmas using ultraintense laser pulses. Phys Plasmas 16(8):083103

    Article  ADS  Google Scholar 

  52. Kaluza MC (2004) Characterisation of laser-accelerated proton beams. PhD thesis. Max-Planck-Institut für Quantenoptik and TU München

    Google Scholar 

  53. Daido H, Nishiuchi M, Pirozhkov AS (2012) Review of laser-driven ion sources and their applications. Rep Progress Phys 75(5):056401

    Article  ADS  Google Scholar 

  54. Fuchs J et al (2005) Laser-driven proton scaling laws and new paths towards energy increase. Nat Phys 2(1):48–54

    Article  Google Scholar 

  55. Hilz P et al (2018) Isolated proton bunch acceleration by a petawatt laser pulse. Nat Commun 9(1):423

    Article  ADS  Google Scholar 

  56. Ping Y et al (2008) Absorption of short laser pulses on solid targets in the ultrarelativistic regime. Phys Rev Lett 100(8):085004

    Article  ADS  Google Scholar 

  57. Bin JH et al (2017) Dynamics of laser-driven proton acceleration exhibited by measured laser absorptivity and reflectivity. Sci Rep 7:43548

    Article  ADS  Google Scholar 

  58. Albertazzi B et al (2014) Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field. Science 346(6207):325–328

    Article  ADS  Google Scholar 

  59. Bagnoud V et al (2017) Studying the dynamics of relativistic laser-plasma interaction on thin foils by means of Fourier-transform spectral interferometry. Phys Rev Lett 118:255003

    Article  ADS  Google Scholar 

  60. Bulanov SS et al (2016) Radiation pressure acceleration: the factors limiting maximum attainable ion energy. Phys Plasmas 23(5):056703

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Ostermayr .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ostermayr, T. (2019). Laser-Driven Ion Acceleration Using Truly Isolated Micro-sphere Targets. In: Relativistically Intense Laser–Microplasma Interactions. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-22208-6_5

Download citation

Publish with us

Policies and ethics