Skip to main content

Transportable Paul Trap for Isolated Micro-targets in Vacuum

  • Chapter
  • First Online:
Relativistically Intense Laser–Microplasma Interactions

Part of the book series: Springer Theses ((Springer Theses))

  • 259 Accesses

Abstract

In this section, an introduction to electrodynamic quadrupole traps is given and the experimental realization is presented. The theoretical part is mostly based on textbook knowledge from Major et al. (Charged particle traps, vol 37. Springer, Heidelberg, 2005 [6]), Werth et al. (Charged particle traps II, vol 54. Springer, Heidelberg, 2009 [7]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The development of this setup and related methods to their current status has been a long-term collaborative effort. It took work of five LMU master/diploma thesis (Hilz [1], Ostermayr [2], Haffa [3], Singer [4] and Gebhard [5]) of which I (co-)supervised the last three, and two dissertations (T. Ostermayr and P. Hilz), to get there.

  2. 2.

    This section is reproduced with small variations, and with permission, from the original peer-reviewed article: T.M. Ostermayr et al., Review of Scientific Instruments, 89:013302, (2018). The article is published by the American Institute of Physics and licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).

  3. 3.

    This section is based on private communication with Ivo Cermak, CGC Instruments, Chemnitz.

  4. 4.

    This section including figures is reproduced with small variations, and with permission, from the original peer-reviewed article: T.M. Ostermayr et al., Review of Scientific Instruments, 89:013302, (2018). The article is published by the American Institute of Physics and licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).

  5. 5.

    This section including figures is reproduced with permission from the original peer-reviewed article: T.M. Ostermayr et al., Review of Scientific Instruments, 89:013302, (2018). The article is published by the American Institute of Physics and licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).

  6. 6.

    From this sentence on, the section and Fig. 4.7 are reproduced with permission from the original peer-reviewed article: T.M. Ostermayr et al., 89:013302, Review of Scientific Instruments, (2018). The article is published by the American Institute of Physics and licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).

References

  1. Hilz PB (2009) Diploma thesis: target developments for laser plasma experiments. MA thesis, Munich

    Google Scholar 

  2. Ostermayr T (2012) Mass limited targets for laser driven ion acceleration. MA thesis, LMU

    Google Scholar 

  3. Haffa D (2014) Optimisation and application of mass limited levitating targets in laser plasma experiments. MA thesis, LMU, München

    Google Scholar 

  4. Singer M (2015) Levitating nano graphene platelets for laser plasma experiments. MA thesis, LMU

    Google Scholar 

  5. Gebhard J (2016) Laser ion acceleration using reduced dimension targets. MA thesis, LMU, München

    Google Scholar 

  6. Major FG, Gheorghe VN, Werth G (2005) Charged particle traps, vol 37. In: Springer series on atomic, optical, and plasma physics. Springer, Heidelberg

    Google Scholar 

  7. Werth G, Gheorghe VN, Major FG (2009) Charged particle traps II, vol 54. In: Springer series on atomic, optical, and plasma physics. Springer, Heidelberg

    Book  Google Scholar 

  8. Earnshaw S (1842) On the nature of the molecular forces which regulate the constitution of the luminiferous ether. Trans Camb Philos Soc 7:97–112

    ADS  Google Scholar 

  9. Meixner J, Schäfke FW (1954) Mathieusche Funktionen und Sphäroidfunktionen, vol LXXI, 1st edn. Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen, Springer, Heidelberg

    Chapter  Google Scholar 

  10. Dehmelt HG (1968) Radiofrequency spectroscopy of stored ions I: storage part II: spectroscopy is now scheduled to appear in volume V of this series. In: Bates DR, Estermann I (eds) Advances in atomic and molecular physics supplement C, vol 3. Academic Press, pp 53–72

    Google Scholar 

  11. Stenholm S (1986) Semiclassical theory of laser cooling. Rev Mod Phys 58:699–739

    Article  ADS  Google Scholar 

  12. Wuerker RF, Shelton H, Langmuir RV (1959) Electrodynamic containment of charged particles. J Appl Phys 30(3):342–349

    Article  ADS  Google Scholar 

  13. Denison DR (1971) Operating parameters of a quadrupole in a grounded cylindrical housing. J Vac Sci Technol 8(1):266–269

    Article  ADS  Google Scholar 

  14. Dayton IE, Shoemaker FC, Mozley RF (1954) The measurement of two dimensional fields. Part II: study of a quadrupole magnet. Rev Sci Instrum 25(5):485–489

    Article  ADS  Google Scholar 

  15. Lee-Whiting GE, Yamazaki L (1971) Semi-analytical calculations for circular quadrupoles. Nucl Instrum Methods 94(2):319–332

    Article  ADS  Google Scholar 

  16. Blaum K et al (1998) Properties and performance of a quadrupole mass filter used for resonance ionization mass spectrometry. Int J Mass Spectrom 181(1–3):67–87

    Article  Google Scholar 

  17. Wang Y, Franzen J, Wanczek KP (1993) The non-linear resonance ion trap. Part 2. A general theoretical analysis. Int J Mass Spectrom Ion Process 124(2):125–144

    Article  ADS  Google Scholar 

  18. Vedel M et al (1998) Evidence of radial-axial motion couplings in an rf stored ion cloud. Appl Phys B 66(2):191–196

    Article  ADS  Google Scholar 

  19. Alheit R et al (1995) Observation of instabilities in a Paul trap with higher-order anharmonicities. Appl Phys B 61(3):277–283

    Article  ADS  Google Scholar 

  20. Pedregosa J et al (2010) Anharmonic contributions in real RF linear quadrupole traps. Int J Mass Spectrom 290:100–105

    Article  Google Scholar 

  21. Ostermayr TM et al (2018) A transportable Paul-trap for levitation and accurate positioning of micron-scale particles in vacuum for laser-plasma experiments. Rev Sci Instrum 89:013302

    Article  ADS  Google Scholar 

  22. CGC Instruments, Chemnitz, Germany

    Google Scholar 

  23. Microparticles GmbH, Berlin. http://www.microparticles-shop.de. Retrieved 30 June 2017

  24. Tectra GmbH. www.tectra.de. Retrieved 25 Feb 2016

  25. Sitek, PSD Model: 2L10-SU7, http://www.sitek.se/pdf/psd/S2-0003-2L10_SU7.pdf/. Last accessed 12 Oct 2017

  26. Cermak I (1994) Laboruntersuchung elektrischer Auadung kleiner Staubteilchen. PhD thesis, Ruprecht-Krals-Univeristät, Heidelberg

    Google Scholar 

  27. Sokollik T et al (2010) Laser-driven ion acceleration using isolated mass-limited spheres. New J Phys 12(11):113013

    Article  Google Scholar 

  28. Harper CA (2000) Modern plastics handbook. McGraw-Hill

    Google Scholar 

  29. Pavl\({\mathring{\text{u}}}\) J et al (2007) Interaction between single dust grains and ions or electrons: laboratory measurements and their consequences for the dust dynamics. In: Faraday discussions, vol 137, p 139

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Ostermayr .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ostermayr, T. (2019). Transportable Paul Trap for Isolated Micro-targets in Vacuum. In: Relativistically Intense Laser–Microplasma Interactions. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-22208-6_4

Download citation

Publish with us

Policies and ethics