Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 285 Accesses

Abstract

The theoretical foundations for lasers were one of Albert Einstein’s many groundbreaking contributions to physics, realizing that instead of just absorbing or spontaneously emitting a photon, atoms could be stimulated to emit photons [1]. The word laser is an acronym for light amplification (by) stimulated emission of radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Einstein A (1917) Zur Quantentheorie der Strahlung. Phys Zeitschrift 18:121–128

    Google Scholar 

  2. Donna Strickland and Gerard Mourou (1985) Compression of amplified chirped optical pulses. Opt Commun 56(3):219–221

    Article  ADS  Google Scholar 

  3. Murray JE, Lowdermilk WH (1980) ND:YAG regenerative amplifier. J Appl Phys 51(7):3548–3556

    Article  ADS  Google Scholar 

  4. Lowdermilk WH, Murray JE (1980) The multipass amplifier: theory and numerical analysis. J Appl Phys 51(5):2436–2444

    Article  ADS  Google Scholar 

  5. Giordmaine JA, Miller RC (1965) Tunable coherent parametric oscillation in LiNbO\(_{3}\) at optical frequencies. Phys Rev Lett 14:973–976

    Article  ADS  Google Scholar 

  6. Rivas DE et al (2017) Next generation driver for attosecond and laser-plasma physics. Sci Rep 7(1)

    Google Scholar 

  7. Texas PetawattWebsite. http://texaspetawatt.ph.utexas.edu/overview.php. Last accessed 07 Nov 2017

  8. Christophe Dorrer and Jake Bromage (2008) Impact of high-frequency spectral phase modulation on the temporal profile of short optical pulses. Opt Express 16(5):3058–3068 Mar

    Google Scholar 

  9. Hong K-H et al (2005) Generation and measurement of 108 intensity contrast ratio in a relativistic kHz chirped-pulse amplified laser. Appl Phys B 81(4):447–457

    Article  ADS  Google Scholar 

  10. Hooker Chris et al (2011) Improving coherent contrast of petawatt laser pulses. Opt Express 19(3):2193–2203 Jan

    Article  ADS  Google Scholar 

  11. Sung JH et al (2014) Enhancement of temporal contrast of high-power femtosecond laser pulses using two saturable absorbers in the picosecond regime. Appl Phys B 116(2):287–292

    Article  ADS  Google Scholar 

  12. Minkovski N et al (2002) Polarization rotation induced by cascaded third-order processes. Opt Lett 27(22):2025–2027 Nov

    Article  ADS  Google Scholar 

  13. Kapteyn HC et al (1991) Prepulse energy suppression for high-energy ultrashort pulses using self-induced plasma shuttering. Opt Lett 16(490)

    Article  ADS  Google Scholar 

  14. Doumy G et al (2004) Complete characterization of a plasma mirror for the production of high-contrast ultraintense laser pulses. English. Phys Rev E 69(2):026402

    Article  ADS  Google Scholar 

  15. Lévy A et al (2007) Double plasma mirror for ultrahigh temporal contrast ultraintense laser pulses. Opt Lett 32(3):310

    Article  ADS  Google Scholar 

  16. Gaul E et al (2014) Pulse contrast measurements of the Texas Petawatt laser. Res Opt Sci, OSA Tech Dig JW2A 23

    Google Scholar 

  17. Murray JE, Van Wonterghem B, Seppala L (1995) Parasitic pencil beams caused by lens reflections in laser amplifier chains. OSTI ID: 108086, UCRL-JC–121125, CONF-9505264–17

    Google Scholar 

  18. Gaul E et al (2016) Improved pulse contrast on the Texas Petawatt Laser. J Phys: Conf Ser 717:012092

    Google Scholar 

  19. Key MH (2001) Atoms, solids, and plasmas in super-intense laser fields. In: Mourou GA et al (ed) pp 147–166. Springer US

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Ostermayr .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ostermayr, T. (2019). High-Power Lasers. In: Relativistically Intense Laser–Microplasma Interactions. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-22208-6_3

Download citation

Publish with us

Policies and ethics