Skip to main content

Introduction to Nuclear-Reaction Theory

  • Conference paper
  • First Online:
  • 736 Accesses

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 225))

Abstract

These notes summarise the lectures I gave during the summer school “International Scientific Meeting on Nuclear Physics” at La Rábida in Spain in June 2018. They offer an introduction to nuclear-reaction theory, starting with the basics in quantum scattering theory followed by the main models used to describe breakup reactions: the Continuum Discretised Coupled Channel method (CDCC), the Time-Dependent approach (TD) and the eikonal approximation. These models are illustrated on the study of the exotic structure of halo nuclei.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. C. Cohen-Tannoudji, B. Diu, F. Laloë, Quantum Mechanics (Wiley, Paris, 1977)

    MATH  Google Scholar 

  2. J.R. Taylor, Scattering Theory: The Quantum Theory of Nonrelativistic Collisions (Dover, New York, 1972)

    Google Scholar 

  3. F.M. Nunes, I.J. Thompson, Nuclear Reactions for Astrophysics: Principles, Calculation and Applications of Low-Energy Reactions (Cambridge University Press, Cambridge, 2009)

    Google Scholar 

  4. C.A. Bertulani, P. Danielewicz, Introduction to Nuclear Reactions (Institute of Physics Publishing, Bristol, 2004)

    Google Scholar 

  5. R. Navarro-Pérez, J. Amaro, E. Ruiz-Arriola, Phys. Lett. B 724(1), 138 (2013). https://doi.org/10.1016/j.physletb.2013.05.066. http://www.sciencedirect.com/science/article/pii/S0370269313004486

    Article  ADS  Google Scholar 

  6. R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, Phys. Rev. C 51, 38 (1995). https://doi.org/10.1103/PhysRevC.51.38

    Article  ADS  Google Scholar 

  7. R. Machleidt, Phys. Rev. C 63, 024001 (2001). https://doi.org/10.1103/PhysRevC.63.024001

  8. E. Epelbaum, H.-W. Hammer, U.G. Meißner, Rev. Mod. Phys. 81, 1773 (2009). https://doi.org/10.1103/RevModPhys.81.1773

    Article  ADS  Google Scholar 

  9. S.B. Dubovichenko, Phys. At. Nucl. 75, 173 (2012). https://doi.org/10.1134/S1063778812020044. https://link.springer.com/article/10.1134%2FS1063778812020044

    Article  ADS  Google Scholar 

  10. K.S. Krane, Introductory Nuclear Physics (Wiley, New York, 1987)

    Google Scholar 

  11. I. Tanihata, H. Hamagaki, O. Hashimoto, S. Nagamiya, Y. Shida, N. Yoshikawa, O. Yamakawa, K. Sugimoto, T. Kobayashi, D. Greiner, N. Takahashi, Y. Nojiri, Phys. Lett. B 160(6), 380 (1985). https://doi.org/10.1016/0370-2693(85)90005-X. http://www.sciencedirect.com/science/article/pii/037026938590005X

    Article  ADS  Google Scholar 

  12. I. Tanihata, H. Hamagaki, O. Hashimoto, Y. Shida, N. Yoshikawa, K. Sugimoto, O. Yamakawa, T. Kobayashi, N. Takahashi, Phys. Rev. Lett. 55, 2676 (1985). https://doi.org/10.1103/PhysRevLett.55.2676

    Article  ADS  Google Scholar 

  13. I. Tanihata, J. Phys. G 22(2), 157 (1996). http://stacks.iop.org/0954-3899/22/i=2/a=004

  14. E. Sauvan, F. Carstoiu, N. Orr, J. Anglique, W. Catford, N. Clarke, M.M. Cormick, N. Curtis, M. Freer, S. Grvy, C. LeBrun, M. Lewitowicz, E. Ligard, F. Marqus, P. Roussel-Chomaz, M. SaintLaurent, M. Shawcross, J. Winfield, Phys. Lett. B 491(1), 1 (2000). https://doi.org/10.1016/S0370-2693(00)01003-0. http://www.sciencedirect.com/science/article/pii/S0370269300010030

    Article  ADS  Google Scholar 

  15. P.G. Hansen, B. Jonson, Europhys. Lett. 4(4), 409 (1987). http://stacks.iop.org/0295-5075/4/i=4/a=005

    Article  ADS  Google Scholar 

  16. M. Zhukov, B. Danilin, D. Fedorov, J. Bang, I. Thompson, J. Vaagen, Phys. Rep. 231(4), 151 (1993). https://doi.org/10.1016/0370-1573(93)90141-Y. http://www.sciencedirect.com/science/article/pii/037015739390141Y

    Article  ADS  Google Scholar 

  17. G. Baur, C. Bertulani, H. Rebel, Nucl. Phys. A 458(1), 188 (1986). https://doi.org/10.1016/0375-9474(86)90290-3. http://www.sciencedirect.com/science/article/pii/0375947486902903

    Article  ADS  Google Scholar 

  18. G. Baur, H. Rebel, Ann. Rev. Nucl. Part. Sci. 46(1), 321 (1996). https://doi.org/10.1146/annurev.nucl.46.1.321

    Article  ADS  Google Scholar 

  19. National Nuclear Data Centre (2018). http://www.nndc.bnl.gov/

  20. J.H. Kelley, E. Kwan, J.E. Purcell, C.G. Sheu, H.R. Weller, Nucl. Phys. A 880, 88 (2012). https://doi.org/10.1016/j.nuclphysa.2012.01.010. http://www.sciencedirect.com/science/article/pii/S0375947412000413

    Article  ADS  Google Scholar 

  21. D. Baye, P. Capel, in Clusters in Nuclei, ed. by C. Beck, Vol. 2 (Springer, Heidelberg, 2012), pp. 121–163

    Google Scholar 

  22. G.H. Rawitscher, Phys. Rev. C 9, 2210 (1974). https://doi.org/10.1103/PhysRevC.9.2210

    Article  ADS  Google Scholar 

  23. M. Kamimura, M. Yahiro, Y. Iseri, Y. Sakuragi, H. Kameyama, M. Kawai, Prog. Theor. Phys. Suppl. 89, 1 (1986). https://doi.org/10.1143/PTPS.89.1

    Article  ADS  Google Scholar 

  24. N. Austern, Y. Iseri, M. Kamimura, M. Kawai, G. Rawitscher, M. Yahiro, Phys. Rep. 154(3), 125 (1987). https://doi.org/10.1016/0370-1573(87)90094-9. http://www.sciencedirect.com/science/article/pii/0370157387900949

    Article  ADS  Google Scholar 

  25. M. Yahiro, K. Ogata, T. Matsumoto, K. Minomo, Prog. Theor. Exp. Phys. 2012(1), 01A206 (2012). https://doi.org/10.1093/ptep/pts008

    Article  Google Scholar 

  26. T. Druet, D. Baye, P. Descouvemont, J.-M. Sparenberg, Nucl. Phys. A 845(1), 88 (2010). https://doi.org/10.1016/j.nuclphysa.2010.05.060. http://www.sciencedirect.com/science/article/pii/S0375947410005282

    Article  ADS  Google Scholar 

  27. A.M. Moro, F. Pérez-Bernal, J.M. Arias, J. Gómez-Camacho, Phys. Rev. C 73, 044612 (2006). https://doi.org/10.1103/PhysRevC.73.044612

  28. I.J. Thompson, Comput. Phys. Rep. 7(4), 167 (1988). https://doi.org/10.1016/0167-7977(88)90005-6. http://www.sciencedirect.com/science/article/pii/0167797788900056

    Article  ADS  Google Scholar 

  29. A. Di Pietro, G. Randisi, V. Scuderi, L. Acosta, F. Amorini, M.J.G. Borge, P. Figuera, M. Fisichella, L.M. Fraile, J. Gomez-Camacho, H. Jeppesen, M. Lattuada, I. Martel, M. Milin, A. Musumarra, M. Papa, M.G. Pellegriti, F. Perez-Bernal, R. Raabe, F. Rizzo, D. Santonocito, G. Scalia, O. Tengblad, D. Torresi, A.M. Vidal, D. Voulot, F. Wenander, M. Zadro, Phys. Rev. Lett. 105, 022701 (2010). https://doi.org/10.1103/PhysRevLett.105.022701

  30. A. Di Pietro, V. Scuderi, A.M. Moro, L. Acosta, F. Amorini, M.J.G. Borge, P. Figuera, M. Fisichella, L.M. Fraile, J. Gomez-Camacho, H. Jeppesen, M. Lattuada, I. Martel, M. Milin, A. Musumarra, M. Papa, M.G. Pellegriti, F. Perez-Bernal, R. Raabe, G. Randisi, F. Rizzo, G. Scalia, O. Tengblad, D. Torresi, A.M. Vidal, D. Voulot, F. Wenander, M. Zadro, Phys. Rev. C 85, 054607 (2012). https://doi.org/10.1103/PhysRevC.85.054607. https://link.aps.org/doi/10.1103/PhysRevC.85.054607

  31. K. Alder, A. Winther, Electromagnetic Excitation (North-Holland, Amsterdam, 1975)

    MATH  Google Scholar 

  32. T. Kido, K. Yabana, Y. Suzuki, Phys. Rev. C 50, R1276 (1994). https://doi.org/10.1103/PhysRevC.50.R1276

    Article  ADS  Google Scholar 

  33. H. Esbensen, G. Bertsch, C.A. Bertulani, Nucl. Phys. A 581(1), 107 (1995). https://doi.org/10.1016/0375-9474(94)00423-K. http://www.sciencedirect.com/science/article/pii/037594749400423K

    Article  ADS  Google Scholar 

  34. S. Typel, H.H. Wolter, Z. Naturforsch 54a, 63 (1999)

    Google Scholar 

  35. M. Fallot, J.A. Scarpaci, D. Lacroix, P. Chomaz, J. Margueron, Nucl. Phys. A 700(1), 70 (2002). https://doi.org/10.1016/S0375-9474(01)01303-3. http://www.sciencedirect.com/science/article/pii/S0375947401013033

    Article  ADS  Google Scholar 

  36. P. Capel, D. Baye, V.S. Melezhik, Phys. Rev. C 68, 014612 (2003). https://doi.org/10.1103/PhysRevC.68.014612

  37. T. Nakamura, N. Fukuda, N. Aoi, N. Imai, M. Ishihara, H. Iwasaki, T. Kobayashi, T. Kubo, A. Mengoni, T. Motobayashi, M. Notani, H. Otsu, H. Sakurai, S. Shimoura, T. Teranishi, Y.X. Watanabe, K. Yoneda, Phys. Rev. C 79, 035805 (2009). https://doi.org/10.1103/PhysRevC.79.035805

  38. H. Esbensen, Phys. Rev. C 80, 024608 (2009). https://doi.org/10.1103/PhysRevC.80.024608

  39. H. Esbensen, R. Reifarth, Phys. Rev. C 80, 059904 (2009). https://doi.org/10.1103/PhysRevC.80.059904

  40. R.J. Glauber, in Lecture in Theoretical Physics, vol. 1, ed. by W.E. Brittin, L.G. Dunham (Interscience, New York, 1959), p. 315

    Google Scholar 

  41. D. Baye, P. Capel, G. Goldstein, Phys. Rev. Lett. 95, 082502 (2005). https://doi.org/10.1103/PhysRevLett.95.082502

  42. G. Goldstein, D. Baye, P. Capel, Phys. Rev. C 73, 024602 (2006). https://doi.org/10.1103/PhysRevC.73.024602

  43. K. Ogata, M. Yahiro, Y. Iseri, T. Matsumoto, M. Kamimura, Phys. Rev. C 68, 064609 (2003). https://doi.org/10.1103/PhysRevC.68.064609

  44. N. Fukuda, T. Nakamura, N. Aoi, N. Imai, M. Ishihara, T. Kobayashi, H. Iwasaki, T. Kubo, A. Mengoni, M. Notani, H. Otsu, H. Sakurai, S. Shimoura, T. Teranishi, Y.X. Watanabe, K. Yoneda, Phys. Rev. C 70, 054606 (2004). https://doi.org/10.1103/PhysRevC.70.054606

  45. P. Capel, H. Esbensen, F.M. Nunes, Phys. Rev. C 85, 044604 (2012). https://doi.org/10.1103/PhysRevC.85.044604

  46. N.J. Upadhyay, A. Deltuva, F.M. Nunes, Phys. Rev. C 85, 054621 (2012). https://doi.org/10.1103/PhysRevC.85.054621

  47. T. Fukui, K. Ogata, P. Capel, Phys. Rev. C 90, 034617 (2014). https://doi.org/10.1103/PhysRevC.90.034617

  48. T. Nakamura, N. Fukuda, T. Kobayashi, N. Aoi, H. Iwasaki, T. Kubo, A. Mengoni, M. Notani, H. Otsu, H. Sakurai, S. Shimoura, T. Teranishi, Y.X. Watanabe, K. Yoneda, M. Ishihara, Phys. Rev. Lett. 83, 1112 (1999). https://doi.org/10.1103/PhysRevLett.83.1112

    Article  ADS  Google Scholar 

  49. S. Typel, R. Shyam, Phys. Rev. C 64, 024605 (2001). https://doi.org/10.1103/PhysRevC.64.024605

  50. S. Typel, G. Baur, Phys. Rev. Lett. 93, 142502 (2004). https://doi.org/10.1103/PhysRevLett.93.142502

  51. S. Typel, G. Baur, Nucl. Phys. A 759(3), 247 (2005). https://doi.org/10.1016/j.nuclphysa.2005.05.145. http://www.sciencedirect.com/science/article/pii/S0375947405008493

    Article  ADS  Google Scholar 

  52. P. Capel, F.M. Nunes, Phys. Rev. C 75, 054609 (2007). https://doi.org/10.1103/PhysRevC.75.054609

  53. D. Baye, Phys. Rev. Lett. 58, 2738 (1987). https://doi.org/10.1103/PhysRevLett.58.2738

    Article  ADS  Google Scholar 

  54. D. Baye, J. Phys. A 20(16), 5529 (1987). http://stacks.iop.org/0305-4470/20/i=16/a=027

  55. J.J. Kolata, V. Guimarães, D. Peterson, P. Santi, R.H. White-Stevens, S.M. Vincent, F.D. Becchetti, M.Y. Lee, T.W. O’Donnell, D.A. Roberts, J.A. Zimmerman, Phys. Rev. C 63, 024616 (2001). https://doi.org/10.1103/PhysRevC.63.024616

  56. J.A. Tostevin, F.M. Nunes, I.J. Thompson, Phys. Rev. C 63, 024617 (2001). https://doi.org/10.1103/PhysRevC.63.024617

  57. P. Capel, G. Goldstein, D. Baye, Phys. Rev. C 70, 064605 (2004). https://doi.org/10.1103/PhysRevC.70.064605

  58. P. Capel, F.M. Nunes, Phys. Rev. C 73, 014615 (2006). https://doi.org/10.1103/PhysRevC.73.014615

  59. P. Capel, D.R. Phillips, H.W. Hammer, Phys. Rev. C 98, 034610 (2018). https://doi.org/10.1103/PhysRevC.98.034610

  60. N.C. Summers, F.M. Nunes, I.J. Thompson, Phys. Rev. C 73, 031603 (2006). https://doi.org/10.1103/PhysRevC.73.031603

  61. N.C. Summers, F.M. Nunes, I.J. Thompson, Phys. Rev. C 74, 014606 (2006). https://doi.org/10.1103/PhysRevC.74.014606

  62. N.C. Summers, F.M. Nunes, I.J. Thompson, Phys. Rev. C 89, 069901 (2014). https://doi.org/10.1103/PhysRevC.89.069901

  63. N.C. Summers, F.M. Nunes, Phys. Rev. C 76, 014611 (2007). https://doi.org/10.1103/PhysRevC.76.014611

  64. N.C. Summers, F.M. Nunes, Phys. Rev. C 77, 049901 (2008). https://doi.org/10.1103/PhysRevC.77.049901

  65. A.M. Moro, J.A. Lay, Phys. Rev. Lett. 109, 232502 (2012). https://doi.org/10.1103/PhysRevLett.109.232502

Download references

Acknowledgements

This project has received funding from the European Unions Horizon 2020 research and innovation program under grant agreement No 654002, the Deutsche Forschungsgemeinschaft within the Collaborative Research Centers 1245 and 1044, and the PRISMA (Precision Physics, Fundamental Interactions and Structure of Matter) Cluster of Excellence. I also acknowledges the support of the State of Rhineland-Palatinate.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Capel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Capel, P. (2019). Introduction to Nuclear-Reaction Theory. In: García-Ramos, JE., Andrés, M., Valera, J., Moro, A., Pérez-Bernal, F. (eds) Basic Concepts in Nuclear Physics: Theory, Experiments and Applications. RÁBIDA 2018. Springer Proceedings in Physics, vol 225. Springer, Cham. https://doi.org/10.1007/978-3-030-22204-8_2

Download citation

Publish with us

Policies and ethics