Skip to main content

Shear/Buoyancy Interaction in Wall Bounded Turbulent Flows

  • Conference paper
  • First Online:
Progress in Turbulence VIII (iTi 2018)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 226))

Included in the following conference series:

Abstract

In this paper we describe and compare two unstably stratified turbulent flows in a channel forced by pressure gradient and wall shear, respectively, with the aim of evidencing similarities and differences in the heat transfer and flow dynamics. In both cases we find that the combination of the mean flow with the thermal forcing produces an increase of the friction coefficient and a non–monotonic dependence of the heat transfer on the mean flow strength. This behaviour might be relevant for the prediction of the light–wind conditions in weather forecast or, more in general, for mixed convection applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.F. Linden, The fluid mechanics of natural ventilation. Ann. Rev. Fluid Mech. 31, 201–238 (1999)

    Article  Google Scholar 

  2. W.M. Kays, M.E. Crawford, B. Weigand, Convective Heat and Mass Transfer (McGraw-Hill, New York, 1980)

    Google Scholar 

  3. T.L. Bergman, A.S. Lavine, F.P. Incropera, D.P. Dewitt, Introduction to Heat Transfer (Wiley, New York, 2011)

    Google Scholar 

  4. J.P. Kuettner, Cloud bands in the earth’s atmosphere: observations and theory. Tellus 23(4–5), 404–426 (1971)

    Google Scholar 

  5. S.R. Hanna, The formation of longitudinal sand dunes by large helical eddies in the atmosphere. J. Appl. Meteorol. 8(6), 874–883 (1969)

    Article  Google Scholar 

  6. D.A. Haines, Horizontal roll vortices and crown fires. J. Appl. Meteorol. 21(6), 751–763 (1982)

    Article  Google Scholar 

  7. R.H. Kraichnan, Turbulent thermal convection at arbitrary Prandtl number. Phys. Fluids 5, 1374–1389 (1962)

    Article  MathSciNet  Google Scholar 

  8. X. He, D. Funfschilling, H. Nobach, E. Bodenschatz, G. Ahlers, Transition to the Ultimate State of Turbulent Rayleigh-BĂ©nard Convection. Phys. Rev. Lett. 108, 024502 (2012)

    Article  Google Scholar 

  9. X. Zhu, V. Mathai, R.J.A.M. Stevens, R. Verzicco, D. Lohse, Transition to the Ultimate Regime in Two-Dimensional Rayleigh-BĂ©nard Convection. Phys. Rev. Lett. 120, 144502 (2018)

    Article  Google Scholar 

  10. R.J.A.M. Stevens, R. Verzicco, D. Lohse, Direct numerical simulations towards ultimate turbulence. APS–DFD, Atlanta (USA) , Abstract E34.00001 (2018)

    Google Scholar 

  11. M. Bernardini, S. Pirozzoli, P. Orlandi, Velocity statistics in turbulent channel flow up to \(Re_\tau = 4000\). J. Fluid Mech. 742, 171–191 (2014)

    Article  Google Scholar 

  12. S. Pirozzoli, M. Bernardini, P. Orlandi, Turbulence statistics in Couette flow at high Reynolds number. J. Fluid Mech. 758, 327–343 (2014)

    Article  MathSciNet  Google Scholar 

  13. O. Shishkina, R.J.A.M. Stevens, S. Grossmann, D. Lohse, Boundary layer structure in turbulent thermal convection and its consequences for the required numerical resolution. New. J. Phys. 12(7), 075022 (2010)

    Article  Google Scholar 

  14. P. Orlandi, Fluid Flow Phenomena: A Numerical Toolkit (Springer, New York, 2000)

    Book  Google Scholar 

  15. X. Zhu, E. Phillips, V.S. Arza, J. Donners, G. Ruetsch, J. Romero, R. Ostilla-Mónico, Y. Yang, D. Lohse, R. Verzicco, M. Fatica, R.J.A.M. Stevens, AFiD-GPU: a versatile Navier-Stokes solver for wall-bounded turbulent flows on GPU clusters. Comput. Phys. Commun. 229, 199–210 (2018)

    Article  Google Scholar 

  16. H. Schlicting, Boundary Layer Theory (McGraw-Hill, New York, 1968)

    Google Scholar 

  17. S. Pirozzoli, M. Bernardini, R. Verzicco, P. Orlandi, Mixed convection in turbulent channels with unstable stratification. J. Fluid Mech. 821, 482–516 (2017)

    Article  MathSciNet  Google Scholar 

  18. M. Lee, R.D. Moser, Extreme-scale motions in turbulent plane Couette flows. J. Fluid Mech. 842, 128–145 (2018)

    Article  MathSciNet  Google Scholar 

  19. A. Blass, X. Zhu, R. Verzicco, D. Lohse, R.J.A.M Stevens, Direct numerical simulations of turbulent sheared thermal convection. J. Fluid Mech (2019). Submitted

    Google Scholar 

  20. A. Scagliarini, H. Einarsson, A. Gylfason, F. Toschi, Law of the wall in an unstably stratified turbulent channel flow. J. Fluid Mech. 781, R5 (2015)

    Article  MathSciNet  Google Scholar 

  21. F. Zonta, A. Soldati, Effect of temperature dependent fluid properties on heat transfer in turbulent mixed convection. Trans. ASME J. Heat Transfer 136(2), 022501 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the computing centre CSCS for the support of the present study under the projects s713, s802, s874 “Sheared Rayleigh–Bénard Convection - Towards the Ultimate Regime of Turbulence”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Verzicco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Blass, A., Pirozzoli, S., Verzicco, R. (2019). Shear/Buoyancy Interaction in Wall Bounded Turbulent Flows. In: Ă–rlĂĽ, R., Talamelli, A., Peinke, J., Oberlack, M. (eds) Progress in Turbulence VIII. iTi 2018. Springer Proceedings in Physics, vol 226. Springer, Cham. https://doi.org/10.1007/978-3-030-22196-6_8

Download citation

Publish with us

Policies and ethics