Skip to main content

Brouwer–Lebesgue Tiling Theorem and Nerve Complexes That Cover Surface Shapes

  • Chapter
  • First Online:
Book cover Computational Geometry, Topology and Physics of Digital Images with Applications

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 162))

  • 713 Accesses

Abstract

This chapter takes a look at the Alexandroff version of the Brouwer–Lebesgue tiling theorem and introduces systems of nerve complexes that have proximity to each other and which are known shapes that cover all or part of the interior of unknown surface shapes in visual scenes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This sample shape is produced using the Mathematica script from https://www.mathematica.stackexchange.com/questions/23546/.

  2. 2.

    Many thanks for Arjuna P. H. Don for this photo.

  3. 3.

    Many thanks to Sheela Ramanna for contributing this picture.

References

  1. Lebesgue, H.: Sur les fonctions représentables analytiquement. J. de Math. 6(1), 139–216 (1905)

    MATH  Google Scholar 

  2. Sagan, H.: Universitext. Space-filling curves, p. xvi+193. Springer, New York (1994). ISBN: 0-387-94265-3, MR1299533

    Google Scholar 

  3. Brouwer, L.: Beweis der invarianz der dimensionenzahl (german). Math. Ann. 70, 161–165 (1911). Zbl JFM 42.0416.02, reviewer Prof. Bklaschke

    Google Scholar 

  4. Brouwer, L.: Über den natürlichen dimensionsbegriff (german). J. füar Math. 142, 146–152 (1913). Zbl JFM 44.0555.01, reviewer Prof. Bklaschke

    Google Scholar 

  5. Adams, C., Morgan, F., Sullivan, J.: When soap bubbles collide. arXiv 0412(020v3), 1–9 (2006)

    Google Scholar 

  6. Salepci, N., Welshinger, J.Y.: Tilings, packings and expected betti numbers in simplicial complexes. arXiv 1806(05084v1), 1–28 (2018)

    Google Scholar 

  7. Grünbaum, B., Shephard, G.: Tilings and Patterns, pp. Xii+700. W.H. Freeman and Co, New York (1987). MR0857454

    Google Scholar 

  8. NASA: Martian olympus mon volcano crater. Technical report, Jet Propulsion Laboratory/Caltech (2018). https://mars.jpl.nasa.gov/gallery/atlas/images/oly.jpg

  9. Buslaev, A., Tatashev, A.: Exact results for discrete dynamical systems on a pair of contours. Math. Methods Appl. Sci. 41(17), 1–12 (2018). https://doi.org/10.1002/mma/4822

    Article  MathSciNet  MATH  Google Scholar 

  10. Lewis, G., Tolman, R.: The principle of relativity, and non-Newtonian mechanics. Proc. Am. Acad. Arts Sci. 44(25), 711–724 (1909). https://www.jstor.org/stable/20022495

  11. Susskind, L., Friedman, A.: Quantum Mechanics. The Theoretical Minimum, xx+364 pp. Penguin Books, UK (2014). ISBN: 978-0-141-977812

    Google Scholar 

  12. Malecki, K.: Graph cellular automata with relation-based neighbourhoods of cells for complex systems modelling: A case of traffic simulation. Symmetry 9(12), 322 (2017). https://doi.org/10.3390/sym9120322

  13. Nagel, K., Schreckenberg, M.: A cellular automaton model for freeway traffic. J. Phys. I Francey 2(12), 2221–2229 (1992). https://doi.org/10.1051/jp1:1992277

  14. Flammini, A., Stasiak, A.: Natural classification of knots. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 463(2078), 569–582 (2017). MR2288834

    Google Scholar 

  15. Toffoli, S.D., Giardino, V.: Forms and roles of diagrams in knot theory. Erkenntnis 79(4), 829–842 (2014). MR3260948

    Google Scholar 

  16. Peters, J.: Foundations of Computer Vision. Computational Geometry, Visual Image Structures and Object Shape Detection, Intelligent Systems Reference Library 124. Springer International Publishing, Switzerland (2017). i–xvii, 432 pp. https://doi.org/10.1007/978-3-319-52483-2, Zbl 06882588 and MR3768717

  17. Peters, J., Tozzi, A., Ramanna, S.: Brain tissue tessellation shows absence of canonical microcircuits. Neurosci. Lett. 626, 99–105 (2016). https://doi.org/10.1016/j.neulet.2016.03.052

    Article  Google Scholar 

  18. Tozzi, A., Peters, J., Deli, E.: Towards plasma-like collisionless trajectories in the brain. Neurosci. Lett. 662, 105–109 (2018)

    Article  Google Scholar 

  19. Cui, E.: Video vortex cat cycles part 1. Technical report, University of Manitoba, Computational Intelligence Laboratory, Deparment of Electrical & Computer Engineering, U of MB, Winnipeg, MB R3T 5V6, Canada (2018). https://youtu.be/rVGmkGTm4Oc

  20. Cui, E.: Video vortex cat cycles part 2. Technical report, University of Manitoba, Computational Intelligence Laboratory, Deparment of Electrical & Computer Engineering, U of MB, Winnipeg, MB R3T 5V6, Canada (2018). https://youtu.be/yJBCdLhgcqk

  21. Ahmad, M., Peters, J.: Proximal C̆ech complexes in approximating digital image object shapes. Theory and application. Theory Appl. Math. Comput. Sci. 7(2), 81–123 (2017). MR3769444

    Google Scholar 

  22. Baldomir, D., Hammond, P.: Geometry of Electromagnetic Systems, p. xi+239. Clarendon Press, Oxford (1996). Zbl 0919.76001

    Google Scholar 

  23. Milnor, J.: Morse Theory. Based on Lecture Notes by M. Spivak and R. Wells, vi+153 pp. Princeton University Press, Princeton (1963). MR0163331

    Google Scholar 

  24. Boxer, L.: Multivalued functions in digital topology. Note di Matematica 37(2), 61–76 (1909). https://doi.org/10.1285/i15900932v37n2p61

    Article  MathSciNet  MATH  Google Scholar 

  25. Peters, J.: Proximal vortex cycles and vortex nerve structures. Non-concentric, nesting, possibly overlapping homology cell complexes. J. Math. Sci. Modell. 1(2), 56–72 (2018). ISSN 2636-8692, www.dergipark.gov.tr/jmsm, See, also, arXiv:1805.03998

  26. Worsley, A., Peters, J.: Enhanced derivation of the electron magnetic moment anomaly from the electron charge from geometric principles. Appl. Phys. Res. 10(6), 24–28 (2018). https://doi.org/10.5539/apr.v10n6p24

    Article  Google Scholar 

  27. Yurkin, Peters, J., Tozzi, A.: A novel belt model of the atom, compatible with quantum dynamics. J. Sci. Eng. Res. 5(7), 413–419 (2018)

    Google Scholar 

  28. Hamrouni, L., Bensaci, R., Kherfi, M., Khaldi, B., Aiadi, O.: Automatic recognition of plant leaves using parallel combination of classifiers. In: Amine, A., Mouhoub, M., Mohamed, O.A., Djebbar, B. (eds.) Computational Intelligence and Its Applications, pp. 597–606. Springer International Publishing, Switzerland (2018). https://doi.org/10.1007/978-3-319-89743-1_51

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James F. Peters .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Peters, J.F. (2020). Brouwer–Lebesgue Tiling Theorem and Nerve Complexes That Cover Surface Shapes. In: Computational Geometry, Topology and Physics of Digital Images with Applications. Intelligent Systems Reference Library, vol 162. Springer, Cham. https://doi.org/10.1007/978-3-030-22192-8_8

Download citation

Publish with us

Policies and ethics