Skip to main content

Hypothetical Soil-Culture System Sub-Models

  • Chapter
  • First Online:
Plant-Plant Allelopathic Interactions III
  • 319 Accesses

Abstract

This chapter describes how conceptual sub-models for soil and soil-sand-culture bioassays in conjunction with quantitative relationships described in the previous chapters and the literature may be used to model how various system elements of soil and soil-sand cultures can potentially modify or control the actions and effects of simple phenolic acids on cucumber seedlings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander M (1977) Introduction to soil microbiology, 2nd edn. Wiley, New York

    Google Scholar 

  • Bakken LR (1997) Culturable and nonculturable bacteria in soil. In: van Elsas JD, Trevors JT, Wellington EMH (eds) Modern soil biology. Marcel Dekker, New York, pp 47–61

    Google Scholar 

  • Balke NE (1985) Effects of allelochemicals on mineral uptake and associated physiological processes. In: Thompson AC (ed) The chemistry of allelopathy: biochemical interactions among plants. ACS symposium series, vol 268. American Chemical Society, Washington, DC, pp 161–178

    Chapter  Google Scholar 

  • Bergmark CL, Jackson WA, Volk RJ, Blum U (1992) Differential inhibition by ferulic acid of nitrate and ammonium uptake in Zea mays L. Plant Physiol 98:639–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blum U (1997) Benefits of citrate over EDTA for extracting phenolic acids from soils and plant debris. J Chem Ecol 23:347–362

    Article  CAS  Google Scholar 

  • Blum U (1998) Effects of microbial utilization of phenolic acids and their phenolic acid breakdown products on allelopathic interactions. J Chem Ecol 24:685–708

    Article  CAS  Google Scholar 

  • Blum U (2004) Fate of phenolic allelochemicals in soils – the role of soil and rhizosphere microorganisms. In: Macías FA, Galindo JCG, Molinillo JMG, Cutler HG (eds) Allelopathy: chemistry and modes of action of allelochemicals. CRC Press, Boca Raton, pp 57–76

    Google Scholar 

  • Blum U (2006) Allelopathy’ s soil system perspective. In: Reigosa MJ, Pedrol N, Gonzalez L (eds) Allelopathy: a physiological process with ecological implications. Springer, Dordrecht, pp 299–340

    Google Scholar 

  • Blum U (2011) Plant–plant allelopathic interactions: phenolic acids, cover crops, and weed emergence. Springer, Dordrecht

    Book  Google Scholar 

  • Blum U (2014) Plant–plant allelopathic interactions II: laboratory bioassays for water-soluble compounds with an emphasis on phenolic acids. Springer, Cham

    Book  Google Scholar 

  • Blum U, Dalton BR (1985) Effects of ferulic acid, an allelopathic compound, on leaf expansion of cucumber seedlings grown in nutrient culture. J Chem Ecol 11:279–301

    Article  CAS  PubMed  Google Scholar 

  • Blum U, Gerig TM (2005) Relationships between phenolic acid concentrations, transpiration, water utilization, leaf area expansion, and uptake of phenolic acids: nutrient culture studies. J Chem Ecol 31:1907–1932

    Article  CAS  PubMed  Google Scholar 

  • Blum U, Gerig TM (2006) Interrelationships between p-coumaric acid, evapotranspiration, soil water content, and leaf expansion. J Chem Ecol 32:1817–1834

    Article  CAS  PubMed  Google Scholar 

  • Blum U, Rebbeck J (1989) The inhibition and recovery of cucumber roots given multiple treatments of ferulic acid in nutrient culture. J Chem Ecol 15:917–928

    Article  CAS  PubMed  Google Scholar 

  • Blum U, Shafer SR (1988) Microbial populations and phenolic acids in soil. Soil Biol Biochem 20:793–800

    Article  CAS  Google Scholar 

  • Blum U, Dalton BR, Shann JR (1985) Effects of various mixture of ferulic acid and some of its microbial metabolic products on cucumber leaf expansion and dry matter in nutrient culture. J Chem Ecol 11:619–641

    Article  CAS  PubMed  Google Scholar 

  • Blum U, Weed SB, Dalton BR (1987) Influence of various soil factors on the effects of ferulic acid on leaf expansion of cucumber seedlings. Plant Soil 98:111–130

    Article  CAS  Google Scholar 

  • Blum U, Gerig TM, Weed SB (1989) Effects of mixtures of phenolic acids on leaf area expansion of cucumber seedlings grown in different pH Portsmouth A1 soil materials. J Chem Ecol 15:2413–2423

    Article  CAS  PubMed  Google Scholar 

  • Blum U, Wentworth TR, Klein K, Worsham AD, King LD, Gerig TM, Lyu S-W (1991) Phenolic acid content of soils from wheat-no till, wheat-conventional till, and fallow-conventional till soybean cropping systems. J Chem Ecol 17:1045–1068

    Article  CAS  PubMed  Google Scholar 

  • Blum U, Gerig TM, Worsham AD, King LD (1993) Modification of allelopathic effects of p-couamric acid on morning-glory seedling biomass by glucose, methionine, and nitrate. J Chem Ecol 19:2791–2911

    CAS  PubMed  Google Scholar 

  • Blum U, Worsham AD, King LD, Gerig TM (1994) Use of water and EDTA extractions to estimate available (free and reversibly bound) phenolic acids in Cecil soils. J Chem Ecol 20:341–359

    Article  CAS  PubMed  Google Scholar 

  • Blum U, Austin MF, Shafer SR (1999a) The fate and effects of phenolic acids in a plant-microbial-soil model system. In: Macias FA, Galindo JCG, Molinillo JMG, Cutler HG (eds) Recent advances in allelopathy I: a science for the future. Cadiz University Press, Puerto Real, pp 159–166

    Google Scholar 

  • Blum U, Shafer SR, Lehman ME (1999b) Evidence for inhibitory allelopathic interactions involving phenolic acids in field soils: concepts vs an experimental model. Crit Rev Plant Sci 18:673–693

    Article  CAS  Google Scholar 

  • Blum U, Staman KL, Flint LJ, Shafer SR (2000) Induction and/or selection of phenolic acid-utilizing bulk-soiland rhizosphere bacteria and their influence on phenolic aid phytotoxicity. J Chem Ecol 26:2059–2078

    Article  CAS  Google Scholar 

  • Booker FL, Blum U, Fiscus EL (1992) Short-term effects of ferulic acid on ion uptake and water relations in cucumber seedlings. J Exp Bot 43:649–655

    Article  CAS  Google Scholar 

  • Burström H (1959) Growth and formation of intercellulares in root meristems. Physiol Plant 12:371–385

    Article  Google Scholar 

  • Burström H (1965) The physiology of plant roots. In: baker KF, Snyder WC (eds) Ecology of soil-borne plant pathogens. University California Press, Berkeley, pp 154–159

    Google Scholar 

  • Carson EW (1974) The plant root and its environment. University Press of Virginia, Charlottesville

    Google Scholar 

  • Chiou CT (1989) Theoretical consideration of the partition uptake of nonionic organic compounds by soil organic matter. In: Sawhney BK (ed) Reactions and movement of organic chemicals in soils, SSSA special publication 22. Soil Science Society of America, Madison, pp 1–29

    Google Scholar 

  • Dalton RD, Blum U, Weed SB (1983) Allelopathic substances in ecosystems: effectiveness of sterile soil components in altering the recovery of ferulic acid. J Chem Ecol 9:1185–1201

    Article  CAS  PubMed  Google Scholar 

  • Dalton BR, Weed SB, Blum U (1987) Plant phenolic acids in soils: a comparison of extraction procedures. Soil Soc Sci Am J 51:1515–1521

    Article  CAS  Google Scholar 

  • Dalton RD, Blum U, Weed SB (1989a) Plant phenolic acids in soils: sorption of ferulic acid by soil and soil components sterilized by different techniques. Soil Biol Biochem 21:1011–1018

    Article  CAS  Google Scholar 

  • Dalton BR, Blum U, Weed SB (1989b) Differential sorption of exogenously applied feruli, p-coumaric, p-hydroxybenzoic and vanillic acids in soil. Soil Sci Soc Am J 53:757–762

    Article  CAS  Google Scholar 

  • Evans WC (1963) The microbial degradation of aromatic compounds. J Gen Microbiol 32:177–185

    Article  CAS  PubMed  Google Scholar 

  • Gerig TM, Blum U (1991) Effects of mixtures of four phenolic acids on leaf area expansion of cucumber seedlings grown in Portsmouth B1 soil material. J Chem Ecol 17:29–40

    Article  CAS  PubMed  Google Scholar 

  • Gerig TM, Blum U, Meier K (1989) Statistical analysis of the joint action of similar compounds. J Chem Ecol 15:2403–2412

    Article  CAS  PubMed  Google Scholar 

  • Glass ADM (1973) Influence of phenolic acids on ion uptake I: inhibition of phosphate uptake. Plant Physiol 51:1037–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glass ADM (1974) Influence of phenolic acids upon ion uptake III: inhibition of potassium absorption. J Exp Bot 25:1104–1113

    Article  CAS  Google Scholar 

  • Glass ADM (1975) Inhibition of phosphate uptake in barely roots by hydroxyl-benzoic acids. Phytochemistry 14:2127–2130

    Article  CAS  Google Scholar 

  • Glass ADM, Dunlap J (1974) Influence of phenolic acids upon ion uptake IV: depolarization of membrane potentials. Plant Physiol 54:855–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenland DJ (1965) Interactions between clays and organic compounds. Part I. Mechanisms of interactions between clays and defined organic matter. Soil Fertil 28:415–425

    Google Scholar 

  • Greenland DJ (1971) Interactions between humic and fulvic acids and clays. Soil Sci 111:34–41

    Article  CAS  Google Scholar 

  • Greenland DJ, Hayes MHB (1981) The chemistry of soil processes. Wiley, Chichester

    Google Scholar 

  • Haider K, Martin JP (1975) Decomposition of specifically carbon-14 labeled benzoic and cinnamic acid derivatives in soil. Soil Sci Soc Am Proc 39:657–662

    Article  CAS  Google Scholar 

  • Haider K, Martin JP, Rietz E (1977) Decomposition in soil of 14C-labeled coumaryl alcohols; free and linked into dehydropolymer and plant lignins and model humic acids. Soil Sci Soc Am J 41:556–562

    Article  CAS  Google Scholar 

  • Hamdaoui O, Naffrechoux E (2007) Modeling of adsorption isotherms of phenolic and chlorophenols onto granular activated carbon. Part I: two-parameter models and equations allowing determination of thermodynamic parameters. J Hazardous Mater 147:381–394

    Article  CAS  Google Scholar 

  • Harper JR, Balke NE (1981) Characterization of the inhibition of K+ absorption in oat roots by salicylic acid. Plant Physiol 68:1349–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris RF, Sommers LE (1968) Plate-dilution frequency technique for assay of microbial ecology. Appl Microbiol 16:330–334

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hasset JJ, Banwart WL (1989) The sorption of nonpolar organics by soils and sediments. In: Sawhney BL, Brown K (eds) Reactions and movement of organic chemicals in soils, SSSA special publication 22. Science Society of America, Madison, pp 31–44

    Google Scholar 

  • Hirsch PR, Mauchline TH, Clark IM (2010) Bioassay-independent molecular techniques for soil microbial ecology. Soil Biol Biochem 42:878–887

    Article  CAS  Google Scholar 

  • Hoagland DR, Arnon DJ (1950) The water-culture method of growing plants without soil. Calif Agric Res Station Circ 347

    Google Scholar 

  • Hughes GR, Averre CW, Sorensen KA (1983) Growing pickling cucumber in North Carolina. Agric Ext Serv Bull AG 315

    Google Scholar 

  • Hunt R (1982) Plant growth curves. The functional approach to plant growth analysis. University Park Press, Baltimore

    Google Scholar 

  • Klein K, Blum U (1990a) Effects of soil nitrogen level on ferulic acid inhibition of cucumber leaf expansion. J Chem Ecol 16:1371–1383

    Article  CAS  PubMed  Google Scholar 

  • Klein K, Blum U (1990b) Inhibition of cucumber leaf expansion by ferulic acid in split-root experiments. J Chem Ecol 16:455–463

    Article  CAS  PubMed  Google Scholar 

  • Lehman ME, Blum U (1999a) Influence of pretreatment stresses on inhibitory effects of ferulic acid, an allelopathic phenolic acid. J Chem Ecol 25:1517–1529

    Article  CAS  Google Scholar 

  • Lehman ME, Blum U (1999b) Evaluation of ferulic acid uptake as a measurement of allelochemical dose: effective concentration. J Chem Ecol 25:2585–2600

    Article  CAS  Google Scholar 

  • Lehman ME, Blum U, Gerig TM (1994) Simultaneous effects of ferulic and p-coumaric acids on cucumber leaf expansion in split-root experiments. J Chem Ecol 20:1773–1782

    Article  CAS  PubMed  Google Scholar 

  • Lyu S-W, Blum U (1990) Effects of ferulic acid, an allelopathic compound, on net P, K, and water uptake by cucumber seedlings in split-root systems. J Chem Ecol 16:2429–2439

    Article  CAS  PubMed  Google Scholar 

  • Lyu S-W, Blum U, Gerig TM, O’Brien TE (1990) Effects of mixtures of phenolic acids on phosphorus uptake by cucumber seedlings. J Chem Ecol 16:2559–2567

    Article  CAS  PubMed  Google Scholar 

  • Martin JP, Haider K (1971) Microbial activity in relation to soil humus formation. Soil Sci 111:54–63

    Article  CAS  Google Scholar 

  • Martin JP, Haider K (1976) Decomposition of specifically carbon-14-labeled ferulic acid: free and linked into model humic acid-type polymers. Soil Sci Soc Am J 40:377–380

    Article  CAS  Google Scholar 

  • Martin JP, Haider K (1979) Effects of concentration on decomposition of some 14C-labeled phenolic compounds, benzoic acid, glucose, wheat straw, and Chlorella protein in soil. Soil Sci Soc Am J 43:917–920

    Article  CAS  Google Scholar 

  • Martin JP, Haider K, Wolf D (1972) Synthesis of phenolic polymers by Hedersonula toruloidea in relation to humic acid formation. Soil Sci Soc Am Proc 36:311–315

    Article  CAS  Google Scholar 

  • McPherson DC (1939) Cortical air spaces in the roots of Zea mays L. New Phytol 38:190–202

    Article  CAS  Google Scholar 

  • Parekh NR, Bardgett RD (2002) The characterization of microbial communities in environmental samples. In: Keith-Roach MJ, Livens FR (eds) Interactions of microorganisms with radionuclides. Elsevier, Amsterdam, pp 37–60

    Chapter  Google Scholar 

  • Parfitt RL, Farmer VC, Russell JD (1977) Adsorption on hydrous oxides I. Oxalate and benzoate on goethite. J Soil Sci 28:29–39

    Article  CAS  Google Scholar 

  • Pue KJ, Blum U, Gerig TM, Shafer SR (1995) Mechanisms by which non inhibitory concentrations of glucose increase inhibitory activity of p-coumaric acid in morning-glory seedling bioassay accumulation. J Chem Ecol 21:833–847

    Article  CAS  PubMed  Google Scholar 

  • Radford PJ (1967) Growth analysis formulae-their use and abuse. Crop Sci 7:171–175

    Article  Google Scholar 

  • Razika B, Abbes B, Messaoud C, Soufi K (2010) Phenol and benzoic acid degradation by Pseudomonas aeruginosa. J Water Resour Protect 2:788–791

    Article  CAS  Google Scholar 

  • Sawhney BL, Brown K (1989) Reactions and movement of organic chemicals in soils, SSSA special publication number 22. Soil Science Society of America, Inc and American Society of Agronomy, Inc, Madison

    Google Scholar 

  • Shafer SR, Blum U (1991) Influence of phenolic acids on microbial populations in the rhizosphere of cucumber. J Chem Ecol 17:369–389

    Article  CAS  PubMed  Google Scholar 

  • Shann JR, Blum U (1987) The uptake of ferulic and p-hydroxybenzoic acids by Cucumis sativus. Phytochemistry 26:2959–2964

    Article  CAS  Google Scholar 

  • Shimizu M, Kobayashi Y, Tanaka H, Wariishi H (2005) Transportation mechanism for vanillin uptake through fungal plasma membrane. Appl Microbiol Biotechnol 68:673–679

    Article  CAS  PubMed  Google Scholar 

  • Sites AD (2001) Factors affecting sorption of organic compounds in natural sorbent/water systems and sorption coefficients for selected pollutants: a review. J Phys Chem Ref Data 30(1):188–439

    Google Scholar 

  • Sørensen J (1997) The rhizosphere as a habitat for soil microorganisms. In: van Elsas JD, Trevors JT, Wellington EMH (eds) Modern soil biology. Marcel Dekker, New York, pp 21–45

    Google Scholar 

  • Staman K, Blum U, Louws F, Robertson D (2001) Can simultaneous inhibition of seedling growth and stimulation of rhizosphere bacterial populations provide evidence for phytotoxin transfer from plant residues in the bulk soil to the rhizosphere of sensitive species? J Chem Ecol 27:807–829

    Article  CAS  PubMed  Google Scholar 

  • Stevenson FJ (1982) Humus chemistry: genesis, composition, reaction. Wiley, New York

    Google Scholar 

  • Sylvia DM, Fuhrmann JJ, Hartel PG, Zuberer DA (2004) Principles and application of soil microbiology, 2nd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Waisel Y, Eshel A, Kafkafi U (1996) Plant roots: the hidden half. Marcel Dekker Inc, New York

    Google Scholar 

  • Wang TSC, Song WL, Ferng YL (1978) Catalytic polymerization of phenolic compounds by clay minerals. Soil Sci 126:15–21

    Article  CAS  Google Scholar 

  • Wang TSC, Huang PM, Chou C-H, Chen J-H (1986) The role of soil minerals in the abiotic polymerization of phenolic compounds and formation of humic substances. In: Huang PM, Schnitzer M (eds) Interactions of soil minerals with natural organics and microbes, SSSA special publication 17. Soil Science Society of America, Madison, pp 251–281

    Google Scholar 

  • Watson JR, Posner AM, Quirk JP (1973) Adsorption of herbicide 2,4-D on goethite. J Soil Sci 24:503–511

    Article  CAS  Google Scholar 

  • Woolley JT (1983) Maintenance of air in intercellular spaces of plants. Plant Physiol 72:989–991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Xu Z (2008) Assessing bacterial diversity in soil. A brief review. J Soils Sediments 8:379–388

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Blum, U. (2019). Hypothetical Soil-Culture System Sub-Models. In: Plant-Plant Allelopathic Interactions III. Springer, Cham. https://doi.org/10.1007/978-3-030-22098-3_9

Download citation

Publish with us

Policies and ethics