Skip to main content

Simple Phenolic Acids in Solution Culture I: pH and pKa

  • Chapter
  • First Online:
Plant-Plant Allelopathic Interactions III

Abstract

In this chapter the author explores the potential roles of solution pH, pKa of phenolic acids and the pH-pKa relationships in modifying the behavior of cucumber seedlings (Cucumis sativus) treated with simple phenolic acids and/or mixtures of simple phenolic acids in solution culture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Appel HM (1993) Phenolics in ecological interactions: the importance of oxidation. J Chem Ecol 39:1521–1552

    Article  Google Scholar 

  • Balke NE (1985) Effects of allelochemicals on mineral uptake and associated physiological processes. In: Thompson AC (ed) The chemistry of allelopathy: biochemical interactions among plants, ACS symposium series 268. American Chemical Society, Washington, DC, pp 161–178

    Chapter  Google Scholar 

  • Bertin C, Yang X, Weston LA (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256:67–83

    Article  CAS  Google Scholar 

  • Blum U (1996) Allelopathic interactions involving phenolic acids. J Nematol 28:259–267

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blum U (2011) Plant-plant allelopathic interactions. Phenolic acids, cover crops, and weed emergence. Springer Science and Business Media, Dordrecht

    Book  Google Scholar 

  • Blum U (2014) Plant-plant allelopathic interactions II: laboratory bioassays for water-soluble compounds with an emphasis on phenolic acids. Springer Science and Business Media, Cham

    Book  Google Scholar 

  • Blum U, Gerig TM (2005) Relationships between phenolic acid concentrations, transpiration, water utilization, leaf area expansion, and uptake of phenolic acids: nutrient culture studies. J Chem Ecol 31:1907–1932

    Article  CAS  PubMed  Google Scholar 

  • Blum U, Dalton BR, Shann JR (1985) Effects of ferulic and p-coumaric acids in nutrient culture on cucumber leaf expansion as influenced by pH. J Chem Ecol 11:1567–1582

    Article  CAS  PubMed  Google Scholar 

  • Blum U, Shafer SR, Lehman ME (1999) Evidence for inhibitory allelopathic interactions involving phenolic acids in field soils: concepts vs. an experimental model. Crit Rev Plant Sci 18:673–693

    Article  CAS  Google Scholar 

  • Connors KA, Lipari JM (1975) Effects of cycloamyloses on apparent dissociation constants of carboxylic acids and phenols: equilibrium analytical selectivity induced by complex formation. J Pharm Sci 65:379–383

    Article  Google Scholar 

  • Einhellig FA (1996) Interactions involving allelopathy in cropping systems. Agron J 88:886–893

    Article  CAS  Google Scholar 

  • Fry SC (1979) Phenolic components of the primary cell wall and their possible role in the hormonal regulation of growth. Planta 146:343–351

    Article  CAS  PubMed  Google Scholar 

  • Fry SC (1983) Feruloylated pectins from the primary cell wall: their structure and possible functions. Planta 157:111–123

    Article  CAS  PubMed  Google Scholar 

  • Fry CF (1988) The growing plant cell wall: chemical and metabolic analysis. Longman Scientific and Technical, Harlow

    Google Scholar 

  • Glass ADM (1973) Influence of phenolic acids on ion uptake I: inhibition of phosphate uptake. Plant Physiol 51:1037–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glass ADM (1974) Influence of phenolic acids upon ion uptake III: inhibition of potassium absorption. J Exp Bot 25:1104–1113

    Article  CAS  Google Scholar 

  • Glass ADM (1975) Inhibition of phosphate uptake in barley roots by hydroxyl-benzoic acids. Phytochemistry 14:2127–2130

    Article  CAS  Google Scholar 

  • Glass ADM, Dunlop J (1974) Influence of phenolic acids upon ion uptake IV: depolarization of membrane potentials. Plant Physiol 54:855–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grotewold E (2004) The challenge of moving chemicals within and out of cells: insights into the transport of plant natural products. Planta 219:906–909

    Article  CAS  PubMed  Google Scholar 

  • Harper JR, Balke NE (1981) Characterization of the inhibition of K+ absorption in oat roots by salicylic acid. Plant Physiol 68:1349–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris JC, Hayes MJ (1990) Acid dissociation constant. In: Lyman WL, Reehl WF, Rosenblatt DH (eds) Handbook of chemical property estimation methods: environmental behavior of organic compounds. American Chemical Society, Washington, DC, pp 6-1–6-28

    Google Scholar 

  • Hoagland DR, Arnon DJ (1950) The water-culture method of growing plants without soil. Calif Agric Exp Sta Circ 347:1–32

    Google Scholar 

  • Holapa LD, Blum U (1991) Effects of exogenously applied ferulic acid, a potential allelopathic compound, on leaf growth, water utilization, and endogenous abscisic acid levels of tomato, cucumber, and bean. J Chem Ecol 17:865–885

    Article  Google Scholar 

  • Inderjit, Streibig JC, Olofsdotter M (2002) Joint action of phenolic acid mixtures and its significances to allelopathy research. Physiol Plant 114:422–428

    Article  CAS  Google Scholar 

  • Lehman ME, Blum U (1999) Evaluation of ferulic acid uptake as a measurement of allelochemical dose: effective concentration. J Chem Ecol 25:2585–2600

    Article  CAS  Google Scholar 

  • Lehman ME, Blum U, Gerig TM (1994) Simultaneous effects of ferulic and p-coumaric acids on cucumber leaf expansion in split root experiments. J Chem Ecol 20:1773–1782

    Article  CAS  PubMed  Google Scholar 

  • Lower S (2016) Systematic treatment of acid-base systems: exact calculations and their approximations. In: Lower S (ed) Chem 1 virtual textbook: a reference text for general chemistry. http://www.chem1.com/acad/webtext/virtualtextbook.html

  • Lyu S-W, Blum U, Gerig TM, O’Brien TE (1990) Effects of mixtures of phenolic acids on phosphorus uptake by cucumber seedlings. J Chem Ecol 16:2559–2567

    Article  CAS  PubMed  Google Scholar 

  • Ohno T, Horesh MY, Merrit KA, Wagai R (2002) Calcium and pH effects on salicylic acid phytotoxicity. Allelopath J 9:19–25

    Google Scholar 

  • Perrin DD, Dempsey B, Serjeant EP (1981) pKa prediction for organic acids and bases. Chapman and Hall, London

    Book  Google Scholar 

  • Prasad MNV, Devi SR (2002) Physiological basis for allelochemical action of ferulic acid. In: Reigosa MJ, Pedrol N (eds) Allelopathy: from molecules to ecosystems. Science Publishers, Inc, Enfield, pp 25–42

    Google Scholar 

  • PubChem (2017) Chemical and physical properties. https://pubchem.ncbi.nlm.nih.gov/

  • Reijenga J, van Hoof A, van loon A, Teunissen B (2013) Anal Chem Insights 8:53–71. (article is available at http://www.la.press.com)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rice EL (1984) Allelopathy, 2nd edn. Academic, Orlando

    Google Scholar 

  • Robinson T (1967) The organic constituents of higher plants: their chemistry and interrelationships. Burgess Publishing Company, Minneapolis

    Google Scholar 

  • Royal Society of Chemistry (2017a) ChemSpider. http://www.chemspider.com/

  • Royal Society of Chemistry (2017b) ChemSpider. http://www.chemspider.com/. Experimental or predicted data taken from Environmental Protection Agency’s EPISuiteâ„¢

  • Shann JR, Blum U (1987a) The uptake of ferulic and p-hydroxybenzoic acids by Cucumis sativus. Phytochemistry 26:2959–2964

    Article  CAS  Google Scholar 

  • Shann JR, Blum U (1987b) The utilization of exogenously supplied ferulic acid in lignin biosynthesis. Phytochemistry 26:2977–2982

    Article  CAS  Google Scholar 

  • Ulrih NP (2015) Effects of caffeic, ferulic, and p-coumaric acids on lipid membranes. In: Preedy VR (ed) Coffee in health and disease prevention. Academic, Amsterdam, pp 813–821

    Chapter  Google Scholar 

  • Weidenhamer JD, Macías FA, Fisher NH, Williamson GB (1993) Just how insoluble are monoterpenes? J Chem Ecol 19:1799–1807

    Article  CAS  PubMed  Google Scholar 

  • Weston LA, Ryan PR, Watt M (2012) Mechanisms for cellular transport and release of allelochemicals from plant roots into the rhizosphere. J Exp Bot 63:3445–3454

    Article  CAS  PubMed  Google Scholar 

  • Yu JQ, Matsui Y (1997) Effects of root exudates of cucumber (Cucumis sativus) and allelochemicals on ion uptake by cucumber seedlings. J Chem Ecol 23:817–827

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Blum, U. (2019). Simple Phenolic Acids in Solution Culture I: pH and pKa . In: Plant-Plant Allelopathic Interactions III. Springer, Cham. https://doi.org/10.1007/978-3-030-22098-3_4

Download citation

Publish with us

Policies and ethics