Skip to main content

CD8+ T Cell Biology in Cytokine Storm Syndromes

  • Chapter
  • First Online:
Cytokine Storm Syndrome

Abstract

Familial forms of hemophagocytic lymphohistiocytosis (HLH) are caused by loss-of-function mutations in genes encoding perforin as well as those required for release of perforin-containing cytotoxic granule constituent. Perforin is expressed by subsets of CD8+ T cells and NK cells, representing lymphocytes that share mechanism of target cell killing yet display distinct modes of target cell recognition. Here, we highlight recent findings concerning the genetics of familial HLH that implicate CD8+ T cells in the pathogenesis of HLH and discuss mechanistic insights from animal models as well as patients that reveal how CD8+ T cells may contribute to or drive disease, at least in part through release of IFN-γ. Intriguingly, CD8+ T cells and NK cells may act differentially in severe hyperinflammatory diseases such as HLH. We also discuss how CD8+ T cells may promote or drive pathology in other cytokine release syndromes (CSS). Moreover, we review the molecular mechanisms underpinning CD8+ T cell-mediated lymphocyte cytotoxicity, key to the development of familial HLH. Together, recent insights to the pathophysiology of CSS in general and HLH in particular are providing promising new therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Henter, J. I., Ehrnst, A., Andersson, J., & Elinder, G. (1993). Familial hemophagocytic lymphohistiocytosis and viral infections. Acta Paediatrica, 82, 369–372.

    Article  CAS  PubMed  Google Scholar 

  2. Grossman, W. J., Radhi, M., Schauer, D., Gerday, E., Grose, C., & Goldman, F. D. (2005). Development of hemophagocytic lymphohistiocytosis in triplets infected with HHV-8. Blood, 106, 1203–1206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Henter, J. I., Elinder, G., Soder, O., Hansson, M., Andersson, B., & Andersson, U. (1991). Hypercytokinemia in familial hemophagocytic lymphohistiocytosis. Blood, 78, 2918–2922.

    Article  CAS  PubMed  Google Scholar 

  4. Takada, H., Ohga, S., Mizuno, Y., Suminoe, A., Matsuzaki, A., Ihara, K., et al. (1999). Oversecretion of IL-18 in haemophagocytic lymphohistiocytosis: A novel marker of disease activity. British Journal of Haematology, 106, 182–189.

    Article  CAS  PubMed  Google Scholar 

  5. Akashi, K., Hayashi, S., Gondo, H., Mizuno, S., Harada, M., Tamura, K., et al. (1994). Involvement of interferon-gamma and macrophage colony-stimulating factor in pathogenesis of haemophagocytic lymphohistiocytosis in adults. British Journal of Haematology, 87, 243–250.

    Article  CAS  PubMed  Google Scholar 

  6. Osugi, Y., Hara, J., Tagawa, S., Takai, K., Hosoi, G., Matsuda, Y., et al. (1997). Cytokine production regulating Th1 and Th2 cytokines in hemophagocytic lymphohistiocytosis. Blood, 89, 4100–4103.

    Article  CAS  PubMed  Google Scholar 

  7. My, L. T., Lien le, B., Hsieh, W. C., Imamura, T., Anh, T. N., Anh, P. N., et al. (2010). Comprehensive analyses and characterization of haemophagocytic lymphohistiocytosis in Vietnamese children. British Journal of Haematology, 148, 301–310.

    Article  PubMed  Google Scholar 

  8. Vaiselbuh, S. R., Bryceson, Y. T., Allen, C. E., Whitlock, J. A., & Abla, O. (2014). Updates on histiocytic disorders. Pediatric Blood & Cancer, 61, 1329–1335.

    Article  Google Scholar 

  9. Janka, G. E. (2012). Familial and acquired hemophagocytic lymphohistiocytosis. Annual Review of Medicine, 63, 233–246.

    Article  CAS  PubMed  Google Scholar 

  10. Henter, J. I., Horne, A., Arico, M., Egeler, R. M., Filipovich, A. H., Imashuku, S., et al. (2007). HLH-2004: Diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatric Blood & Cancer, 48, 124–131.

    Article  Google Scholar 

  11. Davi, S., Consolaro, A., Guseinova, D., Pistorio, A., Ruperto, N., Martini, A., et al. (2011). An international consensus survey of diagnostic criteria for macrophage activation syndrome in systemic juvenile idiopathic arthritis. The Journal of Rheumatology, 38, 764–768.

    Article  PubMed  Google Scholar 

  12. Minoia, F., Bovis, F., Davi, S., Insalaco, A., Lehmberg, K., Shenoi, S., et al. (2017). Development and initial validation of the macrophage activation syndrome/primary hemophagocytic lymphohistiocytosis score, a diagnostic tool that differentiates primary hemophagocytic lymphohistiocytosis from macrophage activation syndrome. The Journal of Pediatrics, 189, 72–78.e73.

    Article  PubMed  Google Scholar 

  13. Weiss, E. S., Girard-Guyonvarc’h, C., Holzinger, D., de Jesus, A. A., Tariq, Z., Picarsic, J., et al. (2018). Interleukin-18 diagnostically distinguishes and pathogenically promotes human and murine macrophage activation syndrome. Blood, 131, 1442–1455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Teachey, D. T., Rheingold, S. R., Maude, S. L., Zugmaier, G., Barrett, D. M., Seif, A. E., et al. (2013). Cytokine release syndrome after blinatumomab treatment related to abnormal macrophage activation and ameliorated with cytokine-directed therapy. Blood, 121, 5154–5157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Suntharalingam, G., Perry, M. R., Ward, S., Brett, S. J., Castello-Cortes, A., Brunner, M. D., et al. (2006). Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. The New England Journal of Medicine, 355, 1018–1028.

    Article  CAS  PubMed  Google Scholar 

  16. Stepp, S. E., Dufourcq-Lagelouse, R., Le Deist, F., Bhawan, S., Certain, S., Mathew, P. A., et al. (1999). Perforin gene defects in familial hemophagocytic lymphohistiocytosis. Science, 286, 1957–1959.

    Article  CAS  PubMed  Google Scholar 

  17. Bossi, G., & Griffiths, G. M. (1999). Degranulation plays an essential part in regulating cell surface expression of Fas ligand in T cells and natural killer cells. Nature Medicine, 5, 90–96.

    Article  CAS  PubMed  Google Scholar 

  18. Fisher, G. H., Rosenberg, F. J., Straus, S. E., Dale, J. K., Middleton, L. A., Lin, A. Y., et al. (1995). Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell, 81, 935–946.

    Article  CAS  PubMed  Google Scholar 

  19. Oliveira, J. B., Bleesing, J. J., Dianzani, U., Fleisher, T. A., Jaffe, E. S., Lenardo, M. J., et al. (2010). Revised diagnostic criteria and classification for the autoimmune lymphoproliferative syndrome (ALPS): Report from the 2009 NIH International Workshop. Blood, 116, e35–e40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Feldmann, J., Callebaut, I., Raposo, G., Certain, S., Bacq, D., Dumont, C., et al. (2003). Munc13-4 is essential for cytolytic granules fusion and is mutated in a form of familial hemophagocytic lymphohistiocytosis (FHL3). Cell, 115, 461–473.

    Article  CAS  PubMed  Google Scholar 

  21. zur Stadt, U., Schmidt, S., Kasper, B., Beutel, K., Diler, A. S., Henter, J. I., et al. (2005). Linkage of familial hemophagocytic lymphohistiocytosis (FHL) type-4 to chromosome 6q24 and identification of mutations in syntaxin 11. Human Molecular Genetics, 14, 827–834.

    Article  CAS  PubMed  Google Scholar 

  22. zur Stadt, U., Rohr, J., Seifert, W., Koch, F., Grieve, S., Pagel, J., et al. (2009). Familial hemophagocytic lymphohistiocytosis type 5 (FHL-5) is caused by mutations in Munc18-2 and impaired binding to syntaxin 11. American Journal of Human Genetics, 85, 482–492.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Cote, M., Menager, M. M., Burgess, A., Mahlaoui, N., Picard, C., Schaffner, C., et al. (2009). Munc18-2 deficiency causes familial hemophagocytic lymphohistiocytosis type 5 and impairs cytotoxic granule exocytosis in patient NK cells. The Journal of Clinical Investigation, 119, 3765–3773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bryceson, Y. T., Rudd, E., Zheng, C., Edner, J., Ma, D., Wood, S. M., et al. (2007). Defective cytotoxic lymphocyte degranulation in syntaxin-11 deficient familial hemophagocytic lymphohistiocytosis 4 (FHL4) patients. Blood, 110, 1906–1915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Menasche, G., Pastural, E., Feldmann, J., Certain, S., Ersoy, F., Dupuis, S., et al. (2000). Mutations in RAB27A cause Griscelli syndrome associated with haemophagocytic syndrome. Nature Genetics, 25, 173–176.

    Article  CAS  PubMed  Google Scholar 

  26. Barbosa, M. D., Nguyen, Q. A., Tchernev, V. T., Ashley, J. A., Detter, J. C., Blaydes, S. M., et al. (1996). Identification of the homologous beige and Chediak-Higashi syndrome genes. Nature, 382, 262–265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Roder, J. C., Haliotis, T., Klein, M., Korec, S., Jett, J. R., Ortaldo, J., et al. (1980). A new immunodeficiency disorder in humans involving NK cells. Nature, 284, 553–555.

    Article  CAS  PubMed  Google Scholar 

  28. Coffey, A. J., Brooksbank, R. A., Brandau, O., Oohashi, T., Howell, G. R., Bye, J. M., et al. (1998). Host response to EBV infection in X-linked lymphoproliferative disease results from mutations in an SH2-domain encoding gene. Nature Genetics, 20, 129–135.

    Article  CAS  PubMed  Google Scholar 

  29. Rigaud, S., Fondaneche, M. C., Lambert, N., Pasquier, B., Mateo, V., Soulas, P., et al. (2006). XIAP deficiency in humans causes an X-linked lymphoproliferative syndrome. Nature, 444, 110–114.

    Article  CAS  PubMed  Google Scholar 

  30. Nichols, K. E., Harkin, D. P., Levitz, S., Krainer, M., Kolquist, K. A., Genovese, C., et al. (1998). Inactivating mutations in an SH2 domain-encoding gene in X-linked lymphoproliferative syndrome. Proceedings of the National Academy of Sciences of the United States of America, 95, 13765–13770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sayos, J., Wu, C., Morra, M., Wang, N., Zhang, X., Allen, D., et al. (1998). The X-linked lymphoproliferative-disease gene product SAP regulates signals induced through the co-receptor SLAM. Nature, 395, 462–469.

    Article  CAS  PubMed  Google Scholar 

  32. Bryceson, Y. T., Pende, D., Maul-Pavicic, A., Gilmour, K. C., Ufheil, H., Vraetz, T., et al. (2012). A prospective evaluation of degranulation assays in the rapid diagnosis of familial hemophagocytic syndromes. Blood, 119, 2754–2763.

    Article  CAS  PubMed  Google Scholar 

  33. Sepulveda, F. E., Debeurme, F., Menasche, G., Kurowska, M., Cote, M., Pachlopnik Schmid, J., et al. (2013). Distinct severity of HLH in both human and murine mutants with complete loss of cytotoxic effector PRF1, RAB27A, and STX11. Blood, 121, 595–603.

    Article  CAS  PubMed  Google Scholar 

  34. Horne, A., Ramme, K. G., Rudd, E., Zheng, C., Wali, Y., al-Lamki, Z., et al. (2008). Characterization of PRF1, STX11 and UNC13D genotype-phenotype correlations in familial hemophagocytic lymphohistiocytosis. British Journal of Haematology, 143, 75–83.

    Article  PubMed  Google Scholar 

  35. Sieni, E., Cetica, V., Santoro, A., Beutel, K., Mastrodicasa, E., Meeths, M., et al. (2011). Genotype-phenotype study of familial haemophagocytic lymphohistiocytosis type 3. Journal of Medical Genetics, 48, 343–352.

    Article  CAS  PubMed  Google Scholar 

  36. Meeths, M., Horne, A., Sabel, M., Bryceson, Y. T., & Henter, J. I. (2015). Incidence and clinical presentation of primary hemophagocytic lymphohistiocytosis in Sweden. Pediatric Blood & Cancer, 62, 346–352.

    Article  Google Scholar 

  37. Verbsky, J. W., Baker, M. W., Grossman, W. J., Hintermeyer, M., Dasu, T., Bonacci, B., et al. (2012). Newborn screening for severe combined immunodeficiency; the Wisconsin experience (2008-2011). Journal of Clinical Immunology, 32, 82–88.

    Article  PubMed  Google Scholar 

  38. Meeths, M., Chiang, S. C., Wood, S. M., Entesarian, M., Schlums, H., Bang, B., et al. (2011). Familial hemophagocytic lymphohistiocytosis type 3 (FHL3) caused by deep intronic mutation and inversion in UNC13D. Blood, 188, 5783–5793.

    Article  CAS  Google Scholar 

  39. Seo, J. Y., Song, J. S., Lee, K. O., Won, H. H., Kim, J. W., Kim, S. H., et al. (2012). Founder effects in two predominant intronic mutations of UNC13D, c.118-308C>T and c.754-1G>C underlie the unusual predominance of type 3 familial hemophagocytic lymphohistiocytosis (FHL3) in Korea. Annals of Hematology, 92, 357–364.

    Article  PubMed  CAS  Google Scholar 

  40. Entesarian, M., Chiang, S. C., Schlums, H., Meeths, M., Chan, M. Y., Mya, S. N., et al. (2013). Novel deep intronic and missense UNC13D mutations in familial haemophagocytic lymphohistiocytosis type 3. British Journal of Haematology, 162, 415–418.

    Article  CAS  PubMed  Google Scholar 

  41. Qian, Y., Johnson, J. A., Connor, J. A., Valencia, C. A., Barasa, N., Schubert, J., et al. (2014). The 253-kb inversion and deep intronic mutations in UNC13D are present in North American patients with familial hemophagocytic lymphohistiocytosis 3. Pediatric Blood & Cancer, 61, 1034–1040.

    Article  CAS  Google Scholar 

  42. Cichocki, F., Schlums, H., Li, H., Stache, V., Holmes, T., Lenvik, T. R., et al. (2014). Transcriptional regulation of Munc13-4 expression in cytotoxic lymphocytes is disrupted by an intronic mutation associated with a primary immunodeficiency. The Journal of Experimental Medicine, 211, 1079–1091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schulert, G. S., Zhang, M., Husami, A., Fall, N., Brunner, H., Zhang, K., et al. (2018). Brief report: Novel UNC13D intronic variant disrupting an NF-kappaB enhancer in a patient with recurrent macrophage activation syndrome and systemic juvenile idiopathic arthritis. Arthritis & Rhematology, 70, 963–970.

    Article  CAS  Google Scholar 

  44. Tesi, B., Rascon, J., Chiang, S. C. C., Burnyte, B., Lofstedt, A., Fasth, A., et al. (2018). A RAB27A 5′ untranslated region structural variant associated with late-onset hemophagocytic lymphohistiocytosis and normal pigmentation. The Journal of Allergy and Clinical Immunology, 142, 317–321 e318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Grandin, V., Sepulveda, F. E., Lambert, N., Al Zahrani, M., Al Idrissi, E., Al-Mousa, H., et al. (2017). A RAB27A duplication in several cases of Griscelli syndrome type 2: An explanation for cases lacking a genetic diagnosis. Human Mutation, 38, 1355–1359.

    Article  CAS  PubMed  Google Scholar 

  46. Chia, J., Yeo, K. P., Whisstock, J. C., Dunstone, M. A., Trapani, J. A., & Voskoboinik, I. (2009). Temperature sensitivity of human perforin mutants unmasks subtotal loss of cytotoxicity, delayed FHL, and a predisposition to cancer. Proceedings of the National Academy of Sciences of the United States of America, 106, 9809–9814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rudd, E., Bryceson, Y. T., Zheng, C., Edner, J., Wood, S. M., Ramme, K., et al. (2008). Spectrum, and clinical and functional implications of UNC13D mutations in familial hemophagocytic lymphohistiocytosis. Journal of Medical Genetics, 45, 134–141.

    Article  CAS  PubMed  Google Scholar 

  48. Terrell, C. E., & Jordan, M. B. (2013). Mixed hematopoietic or T-cell chimerism above a minimal threshold restores perforin-dependent immune regulation in perforin-deficient mice. Blood, 122, 2618–2621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hartz, B., Marsh, R., Rao, K., Henter, J. I., Jordan, M., Filipovich, L., et al. (2016). The minimum required level of donor chimerism in hereditary hemophagocytic lymphohistiocytosis. Blood, 127, 3281–3290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang, K., Jordan, M. B., Marsh, R. A., Johnson, J. A., Kissell, D., Meller, J., et al. (2011). Hypomorphic mutations in PRF1, MUNC13-4, and STXBP2 are associated with adult-onset familial hemophagocytic lymphohistiocytosis. Blood.

    Google Scholar 

  51. Meeths, M., Entesarian, M., Al-Herz, W., Chiang, S. C., Wood, S. M., Al-Ateeqi, W., et al. (2010). Spectrum of clinical presentations in familial hemophagocytic lymphohistiocytosis (FHL) type 5 patients with mutations in STXBP2. Blood, 116, 2635–2643.

    Article  CAS  PubMed  Google Scholar 

  52. Tesi, B., Lagerstedt-Robinson, K., Chiang, S. C., Bdira, E. B., Abboud, M., Belen, B., et al. (2015). Targeted high-throughput sequencing for genetic diagnostics of hemophagocytic lymphohistiocytosis. Genome Medicine, 7, 130.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Sepulveda, F. E., Garrigue, A., Maschalidi, S., Garfa-Traore, M., Menasche, G., Fischer, A., et al. (2016). Polygenic mutations in the cytotoxicity pathway increase susceptibility to develop HLH immunopathology in mice. Blood, 127, 2113–2121.

    Article  CAS  PubMed  Google Scholar 

  54. Chinn, I. K., Eckstein, O. S., Peckham-Gregory, E. C., Goldberg, B. R., Forbes, L. R., Nicholas, S. K., et al. (2018). Genetic and mechanistic diversity in pediatric hemophagocytic lymphohistiocytosis. Blood, 132, 89–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Spessott, W. A., Sanmillan, M. L., McCormick, M. E., Patel, N., Villanueva, J., Zhang, K., et al. (2015). Hemophagocytic lymphohistiocytosis caused by dominant-negative mutations in STXBP2 that inhibit SNARE-mediated membrane fusion. Blood, 125, 1566–1577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang, M., Bracaglia, C., Prencipe, G., Bemrich-Stolz, C. J., Beukelman, T., Dimmitt, R. A., et al. (2016). A heterozygous RAB27A mutation associated with delayed cytolytic granule polarization and hemophagocytic lymphohistiocytosis. Journal of Immunology, 196, 2492–2503.

    Article  CAS  Google Scholar 

  57. Tesi, B., Chiang, S. C., El-Ghoneimy, D., Hussein, A. A., Langenskiold, C., Wali, R., et al. (2015). Spectrum of atypical clinical presentations in patients with biallelic PRF1 missense mutations. Pediatric Blood & Cancer.

    Google Scholar 

  58. Lofstedt, A., Chiang, S. C., Onelov, E., Bryceson, Y. T., Meeths, M., & Henter, J. I. (2015). Cancer risk in relatives of patients with a primary disorder of lymphocyte cytotoxicity: A retrospective cohort study. The Lancet. Haematology, 2, e536–e542.

    Article  PubMed  Google Scholar 

  59. Chaudhry, M. S., Gilmour, K. C., House, I. G., Layton, M., Panoskaltsis, N., Sohal, M., et al. (2016). Missense mutations in the perforin (PRF1) gene as a cause of hereditary cancer predisposition. Oncoimmunology, 5, e1179415.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Chiang, S. C., Theorell, J., Entesarian, M., Meeths, M., Mastafa, M., Al-Herz, W., et al. (2013). Comparison of primary human cytotoxic T-cell and natural killer cell responses reveal similar molecular requirements for lytic granule exocytosis but differences in cytokine production. Blood, 121, 1345–1356.

    Article  CAS  PubMed  Google Scholar 

  61. Chattopadhyay, P. K., Betts, M. R., Price, D. A., Gostick, E., Horton, H., Roederer, M., et al. (2009). The cytolytic enzymes granyzme A, granzyme B, and perforin: Expression patterns, cell distribution, and their relationship to cell maturity and bright CD57 expression. Journal of Leukocyte Biology, 85, 88–97.

    Article  CAS  PubMed  Google Scholar 

  62. Perez, N., Virelizier, J. L., Arenzana-Seisdedos, F., Fischer, A., & Griscelli, C. (1984). Impaired natural killer activity in lymphohistiocytosis syndrome. The Journal of Pediatrics, 104, 569–573.

    Article  CAS  PubMed  Google Scholar 

  63. Schneider, E. M., Lorenz, I., Muller-Rosenberger, M., Steinbach, G., Kron, M., & Janka-Schaub, G. E. (2002). Hemophagocytic lymphohistiocytosis is associated with deficiencies of cellular cytolysis but normal expression of transcripts relevant to killer-cell-induced apoptosis. Blood, 100, 2891–2898.

    Article  CAS  PubMed  Google Scholar 

  64. Binder, D., van den Broek, M. F., Kagi, D., Bluethmann, H., Fehr, J., Hengartner, H., et al. (1998). Aplastic anemia rescued by exhaustion of cytokine-secreting CD8+ T cells in persistent infection with lymphocytic choriomeningitis virus. The Journal of Experimental Medicine, 187, 1903–1920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Matloubian, M., Suresh, M., Glass, A., Galvan, M., Chow, K., Whitmire, J. K., et al. (1999). A role for perforin in downregulating T-cell responses during chronic viral infection. Journal of Virology, 73, 2527–2536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. van Dommelen, S. L., Sumaria, N., Schreiber, R. D., Scalzo, A. A., Smyth, M. J., & Degli-Esposti, M. A. (2006). Perforin and granzymes have distinct roles in defensive immunity and immunopathology. Immunity, 25, 835–848.

    Article  PubMed  CAS  Google Scholar 

  67. Crozat, K., Hoebe, K., Ugolini, S., Hong, N. A., Janssen, E., Rutschmann, S., et al. (2007). Jinx, an MCMV susceptibility phenotype caused by disruption of Unc13d: A mouse model of type 3 familial hemophagocytic lymphohistiocytosis. The Journal of Experimental Medicine, 204, 853–863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Jordan, M. B., Hildeman, D., Kappler, J., & Marrack, P. (2004). An animal model of hemophagocytic lymphohistiocytosis (HLH): CD8+ T cells and interferon gamma are essential for the disorder. Blood, 104, 735–743.

    Article  CAS  PubMed  Google Scholar 

  69. Pachlopnik Schmid, J., Ho, C. H., Chretien, F., Lefebvre, J. M., Pivert, G., Kosco-Vilbois, M., et al. (2009). Neutralization of IFNgamma defeats haemophagocytosis in LCMV-infected perforin- and Rab27a-deficient mice. EMBO Molecular Medicine, 1, 112–124.

    Article  CAS  PubMed  Google Scholar 

  70. Terrell, C. E., & Jordan, M. B. (2013). Perforin deficiency impairs a critical immunoregulatory loop involving murine CD8+ T cells and dendritic cells. Blood, 121, 5184–5191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Krebs, P., Crozat, K., Popkin, D., Oldstone, M. B., & Beutler, B. (2011). Disruption of MyD88 signaling suppresses hemophagocytic lymphohistiocytosis in mice. Blood, 117, 6582–6588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Jenkins, M. R., Rudd-Schmidt, J. A., Lopez, J. A., Ramsbottom, K. M., Mannering, S. I., Andrews, D. M., et al. (2015). Failed CTL/NK cell killing and cytokine hypersecretion are directly linked through prolonged synapse time. The Journal of Experimental Medicine, 212, 307–317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rood, J. E., Rao, S., Paessler, M., Kreiger, P. A., Chu, N., Stelekati, E., et al. (2016). ST2 contributes to T-cell hyperactivation and fatal hemophagocytic lymphohistiocytosis in mice. Blood, 127, 426–435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bode, S. F., Ammann, S., Al-Herz, W., Bataneant, M., Dvorak, C. C., Gehring, S., et al. (2015). The syndrome of hemophagocytic lymphohistiocytosis in primary immunodeficiencies: Implications for differential diagnosis and pathogenesis. Haematologica, 100, 978–988.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Tesi, B., & Bryceson, Y. T. (2018). HLH: Genomics illuminates pathophysiological diversity. Blood, 132, 5–7.

    Article  CAS  PubMed  Google Scholar 

  76. Behrens, E. M., Canna, S. W., Slade, K., Rao, S., Kreiger, P. A., Paessler, M., et al. (2011). Repeated TLR9 stimulation results in macrophage activation syndrome-like disease in mice. The Journal of Clinical Investigation, 121, 2264–2277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Brisse, E., Imbrechts, M., Put, K., Avau, A., Mitera, T., Berghmans, N., et al. (2016). Mouse cytomegalovirus infection in BALB/c mice resembles virus-associated secondary hemophagocytic lymphohistiocytosis and shows a pathogenesis distinct from primary hemophagocytic lymphohistiocytosis. Journal of Immunology, 196, 3124–3134.

    Article  CAS  Google Scholar 

  78. Brisse, E., Imbrechts, M., Mitera, T., Vandenhaute, J., Berghmans, N., Boon, L., et al. (2018). Lymphocyte-independent pathways underlie the pathogenesis of murine cytomegalovirus-associated secondary haemophagocytic lymphohistiocytosis. Clinical and Experimental Immunology, 192, 104–119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Canna, S. W., de Jesus, A. A., Gouni, S., Brooks, S. R., Marrero, B., Liu, Y., et al. (2014). An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nature Genetics, 46, 1140–1146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kitamura, A., Sasaki, Y., Abe, T., Kano, H., & Yasutomo, K. (2014). An inherited mutation in NLRC4 causes autoinflammation in human and mice. The Journal of Experimental Medicine, 211, 2385–2396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yoshimoto, T., Takeda, K., Tanaka, T., Ohkusu, K., Kashiwamura, S., Okamura, H., et al. (1998). IL-12 up-regulates IL-18 receptor expression on T cells, Th1 cells, and B cells: Synergism with IL-18 for IFN-gamma production. Journal of Immunology, 161, 3400–3407.

    CAS  Google Scholar 

  82. Fehniger, T. A., Shah, M. H., Turner, M. J., VanDeusen, J. B., Whitman, S. P., Cooper, M. A., et al. (1999). Differential cytokine and chemokine gene expression by human NK cells following activation with IL-18 or IL-15 in combination with IL-12: Implications for the innate immune response. Journal of Immunology, 162, 4511–4520.

    CAS  Google Scholar 

  83. Zoller, E. E., Lykens, J. E., Terrell, C. E., Aliberti, J., Filipovich, A. H., Henson, P. M., et al. (2011). Hemophagocytosis causes a consumptive anemia of inflammation. The Journal of Experimental Medicine, 208, 1203–1214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Canna, S. W., Wrobel, J., Chu, N., Kreiger, P. A., Paessler, M., & Behrens, E. M. (2013). Interferon-gamma mediates anemia but is dispensable for fulminant toll-like receptor 9-induced macrophage activation syndrome and hemophagocytosis in mice. Arthritis and Rheumatism, 65, 1764–1775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tesi, B., Sieni, E., Neves, C., Romano, F., Cetica, V., Cordeiro, A. I., et al. (2015). Hemophagocytic lymphohistiocytosis in 2 patients with underlying IFN-gamma receptor deficiency. The Journal of Allergy and Clinical Immunology.

    Google Scholar 

  86. Taylor, M. D., Burn, T. N., Wherry, E. J., & Behrens, E. M. (2018). CD8 T cell memory increases immunopathology in the perforin-deficient model of hemophagocytic lymphohistiocytosis secondary to TNF-alpha. ImmunoHorizons, 2, 67–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Waggoner, S. N., Cornberg, M., Selin, L. K., & Welsh, R. M. (2012). Natural killer cells act as rheostats modulating antiviral T cells. Nature, 481, 394–398.

    Article  CAS  Google Scholar 

  88. Sepulveda, F. E., Maschalidi, S., Vosshenrich, C. A., Garrigue, A., Kurowska, M., Menasche, G., et al. (2015). A novel immunoregulatory role for NK-cell cytotoxicity in protection from HLH-like immunopathology in mice. Blood, 125, 1427–1434.

    Article  CAS  PubMed  Google Scholar 

  89. Ferlazzo, G., & Munz, C. (2009). Dendritic cell interactions with NK cells from different tissues. Journal of Clinical Immunology, 29, 265–273.

    Article  CAS  PubMed  Google Scholar 

  90. Kogl, T., Muller, J., Jessen, B., Schmitt-Graeff, A., Janka, G., Ehl, S., et al. (2013). Hemophagocytic lymphohistiocytosis in syntaxin-11-deficient mice: T-cell exhaustion limits fatal disease. Blood, 121, 604–613.

    Article  CAS  PubMed  Google Scholar 

  91. Ammann, S., Lehmberg, K., Zur Stadt, U., Janka, G., Rensing-Ehl, A., Klemann, C., et al. (2017). Primary and secondary hemophagocytic lymphohistiocytosis have different patterns of T-cell activation, differentiation and repertoire. European Journal of Immunology, 47, 364–373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Humblet-Baron, S., Franckaert, D., Dooley, J., Bornschein, S., Cauwe, B., Schonefeldt, S., et al. (2016). IL-2 consumption by highly activated CD8 T cells induces regulatory T-cell dysfunction in patients with hemophagocytic lymphohistiocytosis. The Journal of Allergy and Clinical Immunology, 138, 200–209 e208.

    Article  CAS  PubMed  Google Scholar 

  93. Beura, L. K., Hamilton, S. E., Bi, K., Schenkel, J. M., Odumade, O. A., Casey, K. A., et al. (2016). Normalizing the environment recapitulates adult human immune traits in laboratory mice. Nature, 532, 512–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Podack, E. R., & Konigsberg, P. J. (1984). Cytolytic T cell granules. Isolation, structural, biochemical, and functional characterization. The Journal of Experimental Medicine, 160, 695–710.

    Article  CAS  PubMed  Google Scholar 

  95. de Saint Basile, G., Menasche, G., & Fischer, A. (2010). Molecular mechanisms of biogenesis and exocytosis of cytotoxic granules. Nature Reviews. Immunology, 10, 568–579.

    Article  PubMed  CAS  Google Scholar 

  96. de la Roche, M., Asano, Y., & Griffiths, G. M. (2016). Origins of the cytolytic synapse. Nature Reviews. Immunology, 16, 421–432.

    Article  PubMed  CAS  Google Scholar 

  97. Trapani, J. A., & Smyth, M. J. (2002). Functional significance of the perforin/granzyme cell death pathway. Nature Reviews. Immunology, 2, 735–747.

    Article  CAS  PubMed  Google Scholar 

  98. Lopez, J. A., Susanto, O., Jenkins, M. R., Lukoyanova, N., Sutton, V. R., Law, R. H., et al. (2013). Perforin forms transient pores on the target cell plasma membrane to facilitate rapid access of granzymes during killer cell attack. Blood, 121, 2659–2668.

    Article  CAS  PubMed  Google Scholar 

  99. Cohnen, A., Chiang, S. C., Stojanovic, A., Schmidt, H., Claus, M., Saftig, P., et al. (2013). Surface CD107a/LAMP-1 protects natural killer cells from degranulation-associated damage. Blood, 122, 1411–1418.

    Article  CAS  PubMed  Google Scholar 

  100. Krzewski, K., Gil-Krzewska, A., Nguyen, V., Peruzzi, G., & Coligan, J. E. (2013). LAMP1/CD107a is required for efficient perforin delivery to lytic granules and NK-cell cytotoxicity. Blood, 121, 4672–4683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Abdalgani, M., Filipovich, A. H., Choo, S., Zhang, K., Gifford, C., Villanueva, J., et al. (2015). Accuracy of flow cytometric perforin screening for detecting patients with FHL due to PRF1 mutations. Blood, 126, 1858–1860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Meade, J. L., de Wynter, E. A., Brett, P., Sharif, S. M., Woods, C. G., Markham, A. F., et al. (2006). A family with Papillon-Lefevre syndrome reveals a requirement for cathepsin C in granzyme B activation and NK cell cytolytic activity. Blood, 107, 3665–3668.

    Article  CAS  PubMed  Google Scholar 

  103. Orange, J. S. (2006). Human natural killer cell deficiencies. Current Opinion in Allergy and Clinical Immunology, 6, 399–409.

    Article  PubMed  Google Scholar 

  104. Pham, C. T., Ivanovich, J. L., Raptis, S. Z., Zehnbauer, B., & Ley, T. J. (2004). Papillon-Lefevre syndrome: Correlating the molecular, cellular, and clinical consequences of cathepsin C/dipeptidyl peptidase I deficiency in humans. Journal of Immunology, 173, 7277–7281.

    Article  CAS  Google Scholar 

  105. Baetz, K., Isaaz, S., & Griffiths, G. M. (1995). Loss of cytotoxic T lymphocyte function in Chediak-Higashi syndrome arises from a secretory defect that prevents lytic granule exocytosis. Journal of Immunology, 154, 6122–6131.

    CAS  Google Scholar 

  106. Sepulveda, F. E., Burgess, A., Heiligenstein, X., Goudin, N., Menager, M. M., Romao, M., et al. (2015). LYST controls the biogenesis of the endosomal compartment required for secretory lysosome function. Traffic, 16, 191–203.

    Article  CAS  PubMed  Google Scholar 

  107. Gil-Krzewska, A., Wood, S. M., Murakami, Y., Nguyen, V., Chiang, S. C., Cullinane, A. R., et al. (2016). Chediak-Higashi syndrome: Lysosomal trafficking regulator domains regulate exocytosis of lytic granules but not cytokine secretion by natural killer cells. The Journal of Allergy and Clinical Immunology, 137, 1165–1177.

    Article  CAS  PubMed  Google Scholar 

  108. Chiang, S. C. C., Wood, S. M., Tesi, B., Akar, H. H., Al-Herz, W., Ammann, S., et al. (2017). Differences in granule morphology yet equally impaired exocytosis among cytotoxic T cells and NK cells from Chediak-Higashi syndrome patients. Frontiers in Immunology, 8, 426.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Jessen, B., Maul-Pavicic, A., Ufheil, H., Vraetz, T., Enders, A., Lehmberg, K., et al. (2011). Subtle differences in CTL cytotoxicity determine susceptibility to hemophagocytic lymphohistiocytosis in mice and humans with Chediak-Higashi syndrome. Blood.

    Google Scholar 

  110. Jessen, B., Kogl, T., Sepulveda, F. E., de Saint Basile, G., Aichele, P., & Ehl, S. (2013). Graded defects in cytotoxicity determine severity of hemophagocytic lymphohistiocytosis in humans and mice. Frontiers in Immunology, 4, 448.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Clark, R. H., Stinchcombe, J. C., Day, A., Blott, E., Booth, S., Bossi, G., et al. (2003). Adaptor protein 3-dependent microtubule-mediated movement of lytic granules to the immunological synapse. Nature Immunology, 4, 1111–1120.

    Article  CAS  PubMed  Google Scholar 

  112. Kurowska, M., Goudin, N., Nehme, N. T., Court, M., Garin, J., Fischer, A., et al. (2012). Terminal transport of lytic granules to the immune synapse is mediated by the kinesin-1/Slp3/Rab27a complex. Blood, 119, 3879–3889.

    Article  CAS  PubMed  Google Scholar 

  113. Shirakawa, R., Higashi, T., Tabuchi, A., Yoshioka, A., Nishioka, H., Fukuda, M., et al. (2004). Munc13-4 is a GTP-Rab27-binding protein regulating dense core granule secretion in platelets. The Journal of Biological Chemistry, 279, 10730–10737.

    Article  CAS  PubMed  Google Scholar 

  114. Chicka, M. C., Ren, Q., Richards, D., Hellman, L. M., Zhang, J., Fried, M. G., et al. (2016). Role of Munc13-4 as a Ca2+−dependent tether during platelet secretion. The Biochemical Journal, 473, 627–639.

    Article  CAS  PubMed  Google Scholar 

  115. Bin, N. R., Ma, K., Tien, C. W., Wang, S., Zhu, D., Park, S., et al. (2018). C2 domains of Munc13-4 are crucial for Ca(2+)-dependent degranulation and cytotoxicity in NK cells. Journal of Immunology, 201, 700–713.

    Article  CAS  Google Scholar 

  116. Menager, M. M., Menasche, G., Romao, M., Knapnougel, P., Ho, C. H., Garfa, M., et al. (2007). Secretory cytotoxic granule maturation and exocytosis require the effector protein hMunc13-4. Nature Immunology, 8, 257–267.

    Article  CAS  PubMed  Google Scholar 

  117. Wood, S. M., Meeths, M., Chiang, S. C., Bechensteen, A. G., Boelens, J. J., Heilmann, C., et al. (2009). Different NK cell-activating receptors preferentially recruit Rab27a or Munc13-4 to perforin-containing granules for cytotoxicity. Blood, 114, 4117–4127.

    Article  CAS  PubMed  Google Scholar 

  118. Hellewell, A. L., Foresti, O., Gover, N., Porter, M. Y., & Hewitt, E. W. (2014). Analysis of familial hemophagocytic lymphohistiocytosis type 4 (FHL-4) mutant proteins reveals that S-acylation is required for the function of syntaxin 11 in natural killer cells. PLoS One, 9, e98900.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Halimani, M., Pattu, V., Marshall, M. R., Chang, H. F., Matti, U., Jung, M., et al. (2013). Syntaxin11 serves as a t-SNARE for the fusion of lytic granules in human cytotoxic T lymphocytes. European Journal of Immunology.

    Google Scholar 

  120. Marshall, M. R., Pattu, V., Halimani, M., Maier-Peuschel, M., Muller, M. L., Becherer, U., et al. (2015). VAMP8-dependent fusion of recycling endosomes with the plasma membrane facilitates T lymphocyte cytotoxicity. The Journal of Cell Biology, 210, 135–151.

    Article  CAS  PubMed  Google Scholar 

  121. Muller, M. L., Chiang, S. C., Meeths, M., Tesi, B., Entesarian, M., Nilsson, D., et al. (2014). An N-terminal missense mutation in STX11 causative of FHL4 abrogates syntaxin-11 bnding to Munc18-2. Frontiers in Immunology, 4, 515.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Hackmann, Y., Graham, S. C., Ehl, S., Honing, S., Lehmberg, K., Arico, M., et al. (2013). Syntaxin binding mechanism and disease-causing mutations in Munc18-2. Proceedings of the National Academy of Sciences of the United States of America, 110, E4482–E4491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Rickman, C., Medine, C. N., Bergmann, A., & Duncan, R. R. (2007). Functionally and spatially distinct modes of munc18-syntaxin 1 interaction. The Journal of Biological Chemistry, 282, 12097–12103.

    Article  CAS  PubMed  Google Scholar 

  124. Dulubova, I., Khvotchev, M., Liu, S., Huryeva, I., Sudhof, T. C., & Rizo, J. (2007). Munc18-1 binds directly to the neuronal SNARE complex. Proceedings of the National Academy of Sciences of the United States of America, 104, 2697–2702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Spessott, W. A., Sanmillan, M. L., McCormick, M. E., Kulkarni, V. V., & Giraudo, C. G. (2017). SM protein Munc18-2 facilitates transition of Syntaxin 11-mediated lipid mixing to complete fusion for T-lymphocyte cytotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 114, E2176–E2185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Valdez, A. C., Cabaniols, J. P., Brown, M. J., & Roche, P. A. (1999). Syntaxin 11 is associated with SNAP-23 on late endosomes and the trans-Golgi network. Journal of Cell Science, 112, 845–854.

    CAS  PubMed  Google Scholar 

  127. Loo, L. S., Hwang, L. A., Ong, Y. M., Tay, H. S., Wang, C. C., & Hong, W. (2009). A role for endobrevin/VAMP8 in CTL lytic granule exocytosis. European Journal of Immunology, 39, 3520–3528.

    Article  CAS  PubMed  Google Scholar 

  128. Dressel, R., Elsner, L., Novota, P., Kanwar, N., & Fischer von Mollard, G. (2010). The exocytosis of lytic granules is impaired in Vti1b- or Vamp8-deficient CTL leading to a reduced cytotoxic activity following antigen-specific activation. Journal of Immunology, 185, 1005–1014.

    Article  CAS  Google Scholar 

  129. Matti, U., Pattu, V., Halimani, M., Schirra, C., Krause, E., Liu, Y., et al. (2013). Synaptobrevin2 is the v-SNARE required for cytotoxic T-lymphocyte lytic granule fusion. Nature Communications, 4, 1439.

    Article  PubMed  CAS  Google Scholar 

  130. Spessott, W. A., Sanmillan, M. L., Kulkarni, V. V., McCormick, M. E., & Giraudo, C. G. (2017). Syntaxin 4 mediates endosome recycling for lytic granule exocytosis in cytotoxic T-lymphocytes. Traffic, 18, 442–452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Wang, C. C., Ng, C. P., Lu, L., Atlashkin, V., Zhang, W., Seet, L. F., et al. (2004). A role of VAMP8/endobrevin in regulated exocytosis of pancreatic acinar cells. Developmental Cell, 7, 359–371.

    Article  CAS  PubMed  Google Scholar 

  132. Schoch, S., Deak, F., Konigstorfer, A., Mozhayeva, M., Sara, Y., Sudhof, T. C., et al. (2001). SNARE function analyzed in synaptobrevin/VAMP knockout mice. Science, 294, 1117–1122.

    Article  CAS  PubMed  Google Scholar 

  133. Chang, H. F., Mannebach, S., Beck, A., Ravichandran, K., Krause, E., Frohnweiler, K., et al. (2018). Cytotoxic granule endocytosis depends on the Flower protein. The Journal of Cell Biology, 217, 667–683.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Grupp, S. A., Kalos, M., Barrett, D., Aplenc, R., Porter, D. L., Rheingold, S. R., et al. (2013). Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. The New England Journal of Medicine, 368, 1509–1518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Grupp, S. A., Prak, E. L., Boyer, J., McDonald, K. R., Shusterman, S., Thompson, E., et al. (2012). Adoptive transfer of autologous T cells improves T-cell repertoire diversity and long-term B-cell function in pediatric patients with neuroblastoma. Clinical Cancer Research, 18, 6732–6741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Morgan, R. A., Yang, J. C., Kitano, M., Dudley, M. E., Laurencot, C. M., & Rosenberg, S. A. (2010). Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Molecular Therapy, 18, 843–851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Brentjens, R., Yeh, R., Bernal, Y., Riviere, I., & Sadelain, M. (2010). Treatment of chronic lymphocytic leukemia with genetically targeted autologous T cells: Case report of an unforeseen adverse event in a phase I clinical trial. Molecular Therapy, 18, 666–668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Davila, M. L., Riviere, I., Wang, X., Bartido, S., Park, J., Curran, K., et al. (2014). Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Science Translational Medicine, 6, 224ra225.

    Article  CAS  Google Scholar 

  139. Giavridis, T., van der Stegen, S. J. C., Eyquem, J., Hamieh, M., Piersigilli, A., & Sadelain, M. (2018). CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nature Medicine, 24, 731–738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Bergsten, E., Horne, A., Arico, M., Astigarraga, I., Egeler, R. M., Filipovich, A. H., et al. (2017). Confirmed efficacy of etoposide and dexamethasone in HLH treatment: Long-term results of the cooperative HLH-2004 study. Blood, 130, 2728–2738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Johnson, T. S., Terrell, C. E., Millen, S. H., Katz, J. D., Hildeman, D. A., & Jordan, M. B. (2014). Etoposide selectively ablates activated T cells to control the immunoregulatory disorder hemophagocytic lymphohistiocytosis. Journal of Immunology, 192, 84–91.

    Article  CAS  Google Scholar 

  142. Ehl, S. (2017). Etoposide for HLH: The limits of efficacy. Blood, 130, 2692–2693.

    Article  CAS  PubMed  Google Scholar 

  143. Miettunen, P. M., Narendran, A., Jayanthan, A., Behrens, E. M., & Cron, R. Q. (2011). Successful treatment of severe paediatric rheumatic disease-associated macrophage activation syndrome with interleukin-1 inhibition following conventional immunosuppressive therapy: Case series with 12 patients. Rheumatology, 50, 417–419.

    Article  CAS  PubMed  Google Scholar 

  144. Canna, S. W., Girard, C., Malle, L., de Jesus, A., Romberg, N., Kelsen, J., et al. (2017). Life-threatening NLRC4-associated hyperinflammation successfully treated with IL-18 inhibition. The Journal of Allergy and Clinical Immunology, 139, 1698–1701.

    Article  CAS  PubMed  Google Scholar 

  145. Das, R., Guan, P., Sprague, L., Verbist, K., Tedrick, P., An, Q. A., et al. (2016). Janus kinase inhibition lessens inflammation and ameliorates disease in murine models of hemophagocytic lymphohistiocytosis. Blood, 127, 1666–1675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Maschalidi, S., Sepulveda, F. E., Garrigue, A., Fischer, A., & de Saint Basile, G. (2016). Therapeutic effect of JAK1/2 blockade on the manifestations of hemophagocytic lymphohistiocytosis in mice. Blood, 128, 60–71.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank members of the Bryceson laboratory as well as colleagues in the HLH research field for insightful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yenan T. Bryceson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sekine, T., Galgano, D., Casoni, G.P., Meeths, M., Bryceson, Y.T. (2019). CD8+ T Cell Biology in Cytokine Storm Syndromes. In: Cron, R., Behrens, E. (eds) Cytokine Storm Syndrome. Springer, Cham. https://doi.org/10.1007/978-3-030-22094-5_9

Download citation

Publish with us

Policies and ethics