Skip to main content

Genetics of Macrophage Activation Syndrome in Systemic Juvenile Idiopathic Arthritis

  • Chapter
  • First Online:
Cytokine Storm Syndrome

Abstract

Macrophage activation syndrome (MAS) is a life-threatening episode of hyperinflammation driven by excessive activation and expansion of T cells (mainly CD8) and hemophagocytic macrophages producing proinflammatory cytokines. MAS has been reported in association with almost every rheumatic disease, but it is by far the most common in systemic juvenile idiopathic arthritis (sJIA). Clinically, MAS is similar to familial or primary hemophagocytic lymphohistiocytosis (pHLH), a group of rare autosomal recessive disorders linked to various genetic defects all affecting the perforin-mediated cytolytic pathway employed by NK cells and cytotoxic CD8 T lymphocytes. Decreased cytolytic activity in pHLH patients leads to prolonged survival of target cells associated with increased production of proinflammatory cytokines that overstimulate macrophages. The resulting cytokine storm is believed to be responsible for the frequently fatal multiorgan system failure see in MAS. Whole-exome sequencing as well as targeted sequencing of pHLH-associated genes in patients with sJIA-associated MAS, demonstrated increased “burden” of rare protein altering variants affecting the cytolytic pathway compared to healthy controls. These observations suggest that as in pHLH, genetic variability in the cytolytic pathway contributes to MAS predisposition. Functional studies of some of the novel variants have shown that even in a heterozygous state their presence partially reduces cytolytic activity that may lead to increased cytokine production. In patients with gain-of-function mutations in the NLRC4 gene, MAS-like clinical presentation seems to be induced by a macrophage-intrinsic defect in the absence of primary cytotoxic abnormalities suggesting that in the future the search for pathogenic variants in SJIA/MAS should be extended beyond the cytolytic pathway and include macrophage activation pathways as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grom, A. A., Horne, A. C., & De Benedetti, F. (2016). Macrophage activation syndrome in the era of biologic therapy: Clues to pathogenesis and impact on diagnostic approaches. Nature Reviews. Rheumatology, 12, 259–268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mouy, R., Stephan, J. L., Pillet, P., et al. (1996). Efficacy of cyclosporine a in the treatment of macrophage activation syndrome in juvenile arthritis: Report of five cases. The Journal of Pediatrics, 129, 750–754.

    Article  CAS  PubMed  Google Scholar 

  3. Jordan, M. B., Allen, C. E., Weitzman, S., et al. (2011). How I treat hemophagocytic lymphohistiocytosis. Blood, 118, 4041–4052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Henter, J. I., Horne, A., Arico, M., Egeler, R. M., Filipovich, A. H., et al. (2007). HLH-2004: Diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatric Blood & Cancer, 48, 124–131.

    Article  Google Scholar 

  5. Stepp, S. E., Dufourcq-Lagelouse, R., Le Deist, F., et al. (1999). Perforin gene defects in familial hemophagocytic lymphohistiocytosis. Science, 286, 1957–1959.

    Article  CAS  PubMed  Google Scholar 

  6. Feldmann, J., Callebaut, I., Raposo, G., et al. (2003). Munc13-4 is essential for cytolytic granules fusion and is mutated in a form of familial hemophagocytic lymphohistiocytosis (FHL3). Cell, 115, 461–473.

    Article  CAS  PubMed  Google Scholar 

  7. zur Stadt, U., Schmidt, S., Diler, A. S., et al. (2005). Linkage of familial hemophagocytic lymphohistiocytosis (FHL) type-4 to chromosome 6q24 and identification of mutations in syntaxin 11. Human Molecular Genetics, 14, 827–834.

    Article  PubMed  Google Scholar 

  8. zur Stadt, U., Rohr, J., Seifert, W., et al. (2009). Familial hemophagocytic lymphohistiocytosis type 5 (FHL-5) is caused by mutations in Munc18-2 and impaired binding to Syntaxin 11. American Journal of Human Genetics, 85, 482–492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang, K. J., Jordan, M. B., Marsh, R., et al. (2011). Hypomorphic mutations in PRF1, MUNC13-4, and STXBP2 are associated with adult-onset familial HLH. Blood, 118, 5794–5798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jenkins, M. R., Rudd-Schmidt, J. A., Lopez, J. A., Ramsbottom, K. M., Mannering, S. I., Andrews, D. M., et al. (2015). Failed CTL/NK cell killing and cytokine hypersecretion are directly linked through prolonged synapse time. The Journal of Experimental Medicine, 212, 307–317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Heeg, M., Ammann, S., Klemann, C., Panning, M., Falcone, V., Hengel, H., et al. (2018). Is an infectious trigger always required for primary hemophagocytic lymphohistiocytosis? Lessons from in utero and neonatal disease. Pediatric Blood & Cancer, 65, e27344. https://doi.org/10.1002/pbc.27344

    Article  Google Scholar 

  12. Kagi, D., Odermatt, B., & Mak, T. W. (1999). Homeostatic regulation of CD8 T cells by perforin. European Journal of Immunology, 29, 3262–3272.

    Article  CAS  PubMed  Google Scholar 

  13. Menasche, G., Feldmann, J., Fischer, A., & de Saint Basile, G. (2005). Primary hemophagocytic syndromes point to a direct link between lymphocyte cytotoxicity and homeostasis. Immunological Reviews, 203, 165–179.

    Article  CAS  PubMed  Google Scholar 

  14. Lykens, J. E., Terrell, C. E., Zoller, E. E., Risma, K., & Jordan, M. B. (2011). Perforin is a critical physiologic regulator of T-cell activation. Blood, 118, 618–626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Barbosa, M. D., Nguyen, Q. A., Tchernev, V. T., Ashley, J. A., Detter, J. C., Blaydes, S. M., et al. (1996). Identification of the homologous beige and Chediak-Higashi syndrome genes. Nature, 382, 262–265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Menasche, G., Pastural, E., Feldmann, J., Certain, S., Ersoy, F., Dupuis, S., et al. (2000). Mutations in RAB27A cause Griscelli syndrome associated with haemophagocytic syndrome. Nature Genetics, 25, 173–176.

    Article  CAS  PubMed  Google Scholar 

  17. Coffey, A. J., Brooksbank, R. A., Brandau, O., Oohashi, T., Howell, G. R., Bye, J. M., et al. (1998). Host response to EBV infection in X-linked lymphoproliferative disease results from mutations in an SH2-domain encoding gene. Nature Genetics, 20, 129–135.

    Article  CAS  PubMed  Google Scholar 

  18. Marsh, R. A., Madden, L., Kitchen, B. J., Mody, R., McClimon, B., Jordan, M. B., et al. (2010). XIAP deficiency: A unique primary immunodeficiency best classified as X-linked familial hemophagocytic lymphohistiocytosis and not as X-linked lymphoproliferative disease. Blood, 116, 1079–1082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wada, T., Kanegane, H., Ohta, K., Katoh, F., Imamura, T., Nakazawa, Y., et al. (2014). Sustained elevation of serum interleukin-18 and its association with hemophagocytic lymphohistiocytosis in XIAP deficiency. Cytokine, 65(1), 74–78. https://doi.org/10.1016/j.cyto.2013.09.007

    Article  CAS  PubMed  Google Scholar 

  20. Chirieleison, S. M., Marsh, R. A., Kumar, P., Rathkey, J. K., Dubyak, G. R., & Abbott, D. W. (2017). Nucleotide-binding oligomerization domain (NOD) signaling defects and cell death susceptibility cannot be uncoupled in X-linked inhibitor of apoptosis (XIAP)-driven inflammatory disease. The Journal of Biological Chemistry, 292(23), 9666–9679. https://doi.org/10.1074/jbc.M117.781500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Grom, A. A., Villanueva, J., Lee, S., Goldmuntz, E. A., Passo, M. H., & Filipovich, A. (2003). Natural killer cell dysfunction in patients with systemic-onset juvenile rheumatoid arthritis and macrophage activation syndrome. The Journal of Pediatrics, 142, 292–296.

    Article  CAS  PubMed  Google Scholar 

  22. Vastert, S. J., van Wijk, R., D’Urbano, L. E., de Vooght, K. M., de Jager, W., Ravelli, A., et al. (2010). Mutations in the perforin gene can be linked to macrophage activation syndrome in patients with systemic onset juvenile idiopathic arthritis. Rheumatology (Oxford), 49, 441–449.

    Article  CAS  Google Scholar 

  23. Kaufman, K. M., Linghu, B., Szustakowski, J. D., Husami, A., Yang, F., Zhang, K., et al. (2014). Whole exome sequencing reveals overlap between macrophage activation syndrome in systemic juvenile idiopathic arthritis and familial hemophagocytic lymphohistiocytosis. Arthritis and Rheumatism, 66, 3486–3495.

    Article  CAS  Google Scholar 

  24. Behrens, E. M., Beukelman, T., Paessler, M., & Cron, R. Q. (2007). Occult macrophage activation syndrome in patients with systemic juvenile idiopathic arthritis. The Journal of Rheumatology, 34, 1133–1138.

    PubMed  Google Scholar 

  25. Bleesing, J., Prada, A., Siegel, D. M., Villanueva, J., Olson, J., Ilowite, N. T., et al. (2007). The diagnostic significance of soluble CD163 and soluble interleukin-2 receptor alpha-chain in macrophage activation syndrome and untreated new-onset systemic juvenile idiopathic arthritis. Arthritis and Rheumatism, 56, 965–971.

    Article  CAS  PubMed  Google Scholar 

  26. Bracaglia, C., Sieni, E., Da Ros, M., De Fusco, C., Micalizzi, C., Cetica, V., et al. (2014). Mutations of familial hemophagocytic lymphohistiocytosis related genes and abnormalities of cytotoxicity function tests in patients with macrophage activation syndrome (MAS) occurring in systemic juvenile idiopathic arthritis. Pediatric Rheumatology, 12(Suppl 1), P53.

    Article  PubMed Central  Google Scholar 

  27. Zhang, M., Behrens, E. M., Atkinson, T. P., Shakoory, B., Grom, A. A., & Cron, R. Q. (2014). Genetic defects in cytolysis in macrophage activation syndrome. Current Rheumatology Reports, 16, 439–446.

    Article  PubMed  Google Scholar 

  28. Jessen, B., Kogl, T., Sepulveda, F. E., de Saint Basile, G., Aichele, P., & Ehl, S. (2013). Graded defects in cytotoxicity determine severity of hemophagocytic lymphohistiocytosis in humans and mice. Frontiers in Immunology, 4, 448.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Spessott, W. A., Sanmillan, M. L., McCormick, M. E., Patel, N., Villanueva, J., Zhang, K., et al. (2015). Hemophagocytic lymphohistiocytosis caused by dominant-negative mutations in STXBP2 that inhibit SNARE-mediated membrane fusion. Blood, 125, 1566–1577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang, M., Bracaglia, C., Prencipe, G., Bemrich-Stolz, C. J., Beukelman, T., Dimmitt, R. A., et al. (2016). A heterozygous RAB27A mutation associated with delayed cytolytic granule polarization and hemophagocytic lymphohistiocytosis. Journal of Immunology, 196, 2492–2503.

    Article  CAS  Google Scholar 

  31. Zhang, K., Biroscak, J., Glass, D. N., Thompson, S., Finkel, T., Murray, P., et al. (2008). Macrophage activation syndrome in systemic juvenile idiopathic arthritis is associated with MUNC13D gene polymorphisms. Arthritis and Rheumatism, 58, 2892–2896.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bruno, G., Cannella, S., Trizzino, A., Mosa, C., Faruggia, P., Guggino, G., et al. (2012). PRF1 A91V mutation associated with MUNC13-4 polymorphisms predispose to haemophagocytic lymphohistiocytosis. Journal of Clinical Immunology, 32(Suppl 1), 631.

    Google Scholar 

  33. Schulert, G., Zhang, M., Husami, A., Fall, N., Brunner, H., Zhang, K., et al. (2018). Novel NC13D intronic variant disrupting a NFkB enhancer in a patient with recurrent macrophage activation syndrome and systemic JIA. Arthritis Rheumatol 70(6), 963–970.

    Google Scholar 

  34. Cichocki, F., Schlums, H., Li, H., et al. (2014). Transcriptional regulation of MUNC13-4 expression in cytotoxic lymphocytes is disrupted by an intronic mutation associated with primary immunodeficiency. The Journal of Experimental Medicine, 211, 1079–1091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Canna, S. W., de Jesus, A. A., Gouni, S., Brooks, S. R., Marrero, B., Liu, Y., et al. (2014). An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nature Genetics, 46, 1140–1146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Romberg, N., Al Moussawi, K., Nelson-Williams, C., Stiegler, A. L., Loring, E., Choi, M., et al. (2014). Mutation of NLRC4 causes a syndrome of enterocolitis and autoinflammation. Nature Genetics, 46, 1135–1139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yanagimachi, M., Naruto, T., Miyamae, T., Hara, T., Kikuchi, M., Hara, R., et al. (2011). Association of IRF5 polymorphisms with susceptibility to macrophage activation syndrome in patients with juvenile idiopathic arthritis. The Journal of Rheumatology, 38, 769–774.

    Article  CAS  PubMed  Google Scholar 

  38. Bracaglia, C., Kathy de Graaf, K., Marafon, D. P., D’Ario, G., Guilhot, F., Ferlin, W., et al. (2017). Elevated circulating levels of interferon-γ and interferon- induced chemokines characterize patients with macrophage activation syndrome complicating systemic JIA. Annals of the Rheumatic Diseases, 76, 166–172.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei A. Grom .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Grom, A.A. (2019). Genetics of Macrophage Activation Syndrome in Systemic Juvenile Idiopathic Arthritis. In: Cron, R., Behrens, E. (eds) Cytokine Storm Syndrome. Springer, Cham. https://doi.org/10.1007/978-3-030-22094-5_8

Download citation

Publish with us

Policies and ethics