Skip to main content

Murine Models of Secondary Cytokine Storm Syndromes

  • Chapter
  • First Online:
Cytokine Storm Syndrome

Abstract

Hemophagocytic lymphohistiocytosis (HLH) comprises a broad spectrum of life-threatening cytokine storm syndromes, classified into primary (genetic) or secondary (acquired) HLH. The latter occurs in a variety of medical conditions, including infections, malignancies, autoimmune and autoinflammatory diseases, acquired immunodeficiency and metabolic disorders. Despite recent advances in the field, the pathogenesis of secondary HLH remains incompletely understood. Considering the heterogeneity of triggering factors and underlying diseases in secondary HLH, a large diversity of animal models has been developed to explore pivotal disease mechanisms. Currently, nearly 20 animal models have been described, each recapitulating certain aspects of secondary HLH. This review provides a comprehensive overview of the existing models, highlighting relevant findings, discussing the involvement of different cell types and cytokines in disease development and progression, and considering points of interest towards future therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ag:

Antigen

APC:

Antigen-presenting cell

BP:

Binding protein

CAEBV:

Chronic active EBV infection

CCL:

C-C motif chemokine ligand

CFA:

Complete Freund’s adjuvant

CSS:

Cytokine Storm Syndrome

dsDNA:

Double-stranded DNA

EBV:

Epstein–Barr virus

GM-CSF:

Granulocyte macrophage colony stimulating factor

HIF:

Hypoxia-inducible factor

HLH:

Hemophagocytic lymphohistiocytosis

HSC:

Hematopoietic stem cell

HVP:

Herpesvirus papio

IDO:

Indoleamine 2,3-dioxygenase

IFN:

Interferon

IL:

Interleukin

IL2R:

IL-2 receptor

IRF:

Interferon-regulatory factor

IVIG:

Intravenous immunoglobulins

JAK:

Janus kinase

KO:

Knockout

LCMV:

Lymphocytic choriomeningitis virus

LPS:

Lipopolysaccharide

MAS:

Macrophage activation syndrome

MCMV:

Mouse cytomegalovirus

MHC:

Major histocompatibility complex

MMP:

Matrix metalloproteinase

NF-κB:

Nuclear factor κB

NK cell:

Natural killer cell

NOD:

Nonobese diabetic

NRG:

NOD/RAG/IL2Rγnull

NSG:

NOD/SCID/IL-2Rγ−/−

PBMC:

Peripheral blood mononuclear cell

pHLH:

Primary HLH

PPAR:

Peroxisome proliferator activated receptor

R:

Receptor

RAG:

Recombination-activating gene

RBC:

Red blood cell

sCD25:

Soluble CD25

SCF:

Stem cell factor

SCID:

Severe combined immunodeficient

sHLH:

Secondary HLH

sJIA:

Systemic juvenile idiopathic arthritis

SLE:

Systemic lupus erythematosus

STAT:

Signal transducer and activator of transcription

Tg:

Transgenic

Th:

T helper cell

TLR:

Toll-like receptor

TNF:

Tumor necrosis factor

Treg:

Regulatory T cell

WT:

Wild-type

YFP:

Yellow fluorescent protein

References

  1. Jordan, M. B., Hildeman, D., Kappler, J., & Marrack, P. (2004). An animal model of hemophagocytic lymphohistiocytosis (HLH): CD8+ T cells and interferon gamma are essential for the disorder. Blood, 104, 735–743.

    Article  CAS  PubMed  Google Scholar 

  2. Crozat, K., Hoebe, K., Ugolini, S., Hong, N. A., Janssen, E., Rutschmann, S., et al. (2007). Jinx, an MCMV susceptibility phenotype caused by disruption of Unc13d: A mouse model of type 3 familial hemophagocytic lymphohistiocytosis. The Journal of Experimental Medicine, 204, 853–863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Krebs, P., Crozat, K., Popkin, D., Oldstone, M. B., & Beutler, B. (2011). Disruption of MyD88 signaling suppresses hemophagocytic lymphohistiocytosis in mice. Blood, 117, 6582–6588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pachlopnik Schmid, J., Ho, C.-H., Diana, J., Pivert, G., Lehuen, A., Geissmann, F., et al. (2008). A Griscelli syndrome type 2 murine model of hemophagocytic lymphohistiocytosis (HLH). European Journal of Immunology, 38, 3219–3225.

    Article  PubMed  CAS  Google Scholar 

  5. Kögl, T., Müller, J., Jessen, B., Schmitt-Graeff, A., Janka, G., Ehl, S., et al. (2013). Hemophagocytic lymphohistiocytosis in syntaxin-11-deficient mice: T-cell exhaustion limits fatal disease. Blood, 121, 604–613.

    Article  PubMed  CAS  Google Scholar 

  6. Terrell, C. E., & Jordan, M. B. (2013). Perforin deficiency impairs a critical immunoregulatory loop involving murine CD8(+) T cells and dendritic cells. Blood, 121, 5184–5191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Terrell, C. E., & Jordan, M. B. (2013). Mixed hematopoietic or T cell chimerism above a minimal threshold restores perforin-dependent immune regulation in perforin-deficient mice. Blood, 122, 2618–2621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pachlopnik Schmid, J., Ho, C.-H., Chrétien, F., Lefebvre, J. M., Pivert, G., Kosco-Vilbois, M., et al. (2009). Neutralization of IFNgamma defeats haemophagocytosis in LCMV-infected perforin- and Rab27a-deficient mice. EMBO Molecular Medicine, 1, 112–124.

    Article  CAS  PubMed  Google Scholar 

  9. Sepulveda, F. E., Maschalidi, S., Vosshenrich, C. A. J., Garrigue, A., Kurowska, M., Ménasche, G., et al. (2016). A novel immunoregulatory role for NK-cell cytotoxicity in protection from HLH-like immunopathology in mice. Blood, 125, 1427–1434.

    Article  CAS  Google Scholar 

  10. Janka, G. E., & Lehmberg, K. (2014). Hemophagocytic syndromes—An update. Blood Reviews, 28, 135–142.

    Article  PubMed  Google Scholar 

  11. Henter, J. I., Horne, A., Arico, M., Egeler, R. M., Webb, D., Winiarski, J., et al. (2007). HLH-2004: Diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pedriatric Blood Cancer, 48, 124–131.

    Article  Google Scholar 

  12. Fardet, L., Galicier, L., & Lambotte, O. (2014). Development and validation of a score for the diagnosis of reactive hemophagocytic syndrome (HScore). Arthritis and Rheumatism, 66, 2613–2620.

    Article  Google Scholar 

  13. Sepulveda, F. E., Garrigue, A., Maschalidi, S., Garfa-Traore, M., Ménasché, G., Fischer, A., et al. (2016). Polygenic mutations in the cytotoxicity pathway increase susceptibility to develop HLH immunopathology in mice. Blood, 127, 2113–2121.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, K., Jordan, M. B., Marsh, R. A., Johnson, J. A., Kissell, D., Meller, J., et al. (2011). Hypomorphic mutations in PRF1, MUNC13-4, and STXBP2 are associated with adult-onset familial HLH. Blood, 118, 5794–5798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang, K., Chandrakasan, S., Chapman, H., Valencia, C. A., Husami, A., Kissell, D., et al. (2014). Synergistic defects of different molecules in the cytotoxic pathway lead to clinical familial hemophagocytic lymphohistiocytosis. Blood, 124, 1331–1334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kaufman, K. M., Linghu, B., Szustakowski, J. D., Husami, A., Yang, F., Zhang, K., et al. (2014). Whole exome sequencing reveals overlap between macrophage activation syndrome in systemic juvenile idiopathic arthritis and familial hemophagocytic lymphohistiocytosis. Arthritis and Rheumatism, 66, 3486–3495.

    Article  CAS  Google Scholar 

  17. Zhang, M., Bracaglia, C., Prencipe, G., Bemrich-Stolz, C. J., Beukelman, T., Dimmitt, R. A., et al. (2016). A heterozygous RAB27A mutation associated with delayed cytolytic granule polarization and hemophagocytic lymphohistiocytosis. Journal of Immunology, 196, 2492–2503.

    Article  CAS  Google Scholar 

  18. Spessott, W. A., Sanmillan, M. L., McCormick, M. E., Patel, N., Villanueva, J., Zhang, K., et al. (2015). Hemophagocytic lymphohistiocytosis caused by dominant-negative mutations in STXBP2 that inhibit SNARE-mediated membrane fusion. Blood, 125, 1566–1577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brisse, E., Wouters, C. H., Andrei, G., & Matthys, P. (2017). How viruses contribute to the pathogenesis of hemophagocytic lymphohistiocytosis. Frontiers in Immunology, 8, 1–8.

    Article  CAS  Google Scholar 

  20. Hsieh, W.-C., Chang, Y., Hsu, M.-C., Lan, B.-S., Hsiao, G.-C., Chuang, H.-C., et al. (2007). Emergence of anti-red blood cell antibodies triggers red cell phagocytosis by activated macrophages in a rabbit model of Epstein-Barr virus-associated hemophagocytic syndrome. The American Journal of Pathology, 170, 1629–1639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Patarca, R., & Fletcher, M. A. (1995). Structure and pathophysiology of the erythrocyte membrane-associated Paul-Bunnell heterophile antibody determinant in Epstein-Barr virus-associated disease. Critical Reviews in Oncogenesis, 6, 305–326.

    Article  CAS  PubMed  Google Scholar 

  22. Kasahara, Y., Yachie, A., Takei, K., Kanegane, C., Okada, K., Ohta, K., et al. (2001). Differential cellular targets of Epstein-Barr virus (EBV) infection between acute EBV-associated hemophagocytic lymphohistiocytosis and chronic active EBV infection. Blood, 98, 1882–1888.

    Article  CAS  PubMed  Google Scholar 

  23. Kasahara, Y., & Yachie, A. (2002). Cell type specific infection of Epstein-Barr virus (EBV) in EBV-associated hemophagocytic lymphohistiocytosis and chronic active EBV infection. Critical Reviews in Oncology/Hematology, 44, 283–294.

    Article  PubMed  Google Scholar 

  24. Yang, X., Wada, T., Imadome, K.-I., Nishida, N., Mukai, T., Fujiwara, M., et al. (2012). Characterization of Epstein-Barr virus (EBV)-infected cells in EBV-associated hemophagocytic lymphohistiocytosis in two patients with X-linked lymphoproliferative syndrome type 1 and type 2. Herpesviridae, 3, 1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Hayashi, K., Ohara, N., Teramoto, N., Onoda, S., Chen, H., Oka, T., et al. (2001). An animal model for human EBV-associated hemophagocytic syndrome. Herpesvirus Papio frequently induces fatal lymphoproliferative disorders with hemophagocytic syndrome in rabbits. The American Journal of Pathology, 158, 2–5.

    Article  Google Scholar 

  26. Hayashi, K., Teramoto, N., & Akagi, T. (2002). Animal in vivo models of EBV-associated lymphoproliferative diseases: Special references to rabbit models. Histology and Histopathology, 17, 1293–1310.

    CAS  PubMed  Google Scholar 

  27. Hayashi, K., Joko, H., Koirala, T. R., Onoda, S., Jin, Z.-S., Munemasa, M., et al. (2003). Therapeutic trials for a rabbit model of EBV-associated Hemophagocytic Syndrome (HPS): effects of vidarabine or CHOP, and development of Herpesvirus papio (HVP)-negative lymphomas surrounded by HVP-infected lymphoproliferative disease. Histology and Histopathology, 18, 1155–1168.

    CAS  PubMed  Google Scholar 

  28. Hayashi, K., Jin, Z., Onoda, S., Joko, H., Teramoto, N., Ohara, N., et al. (2003). Rabbit model for human EBV-associated hemophagocytic syndrome (HPS). Sequential autopsy analysis and characterization of IL-2 dependent cell lines established from herpesvirus papio-induced fatal rabbit lymphoproliferative disease with HPS. The American Journal of Pathology, 162, 1721–1736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sato, K., Misawa, N., Nie, C., Satou, Y., Iwakiri, D., Matsuoka, M., et al. (2011). A novel animal model of Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis in humanized mice. Blood, 117, 5663–5673.

    Article  CAS  PubMed  Google Scholar 

  30. Yajima, M., Imadome, K.-I., Nakagawa, A., Watanabe, S., Terashima, K., Nakamura, H., et al. (2008). A new humanized mouse model of Epstein-Barr virus infection that reproduces persistent infection, lymphoproliferative disorder, and cell-mediated and humoral immune responses. The Journal of Infectious Diseases, 198, 673–682.

    Article  CAS  PubMed  Google Scholar 

  31. Imadome, K., Yajima, M., Arai, A., Nakazawa, A., Kawano, F., Ichikawa, S., et al. (2011). Novel mouse xenograft models reveal a critical role of CD4+ T cells in the proliferation of EBV-infected T and NK cells. PLoS Pathogens, 7, e1002326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Brisse, E., Imbrechts, M., Put, K., Avau, A., Mitera, T., Berghmans, N., et al. (2016). Mouse cytomegalovirus infection in BALB/c mice resembles virus-associated secondary hemophagocytic lymphohistiocytosis and shows a pathogenesis distinct from primary hemophagocytic lymphohistiocytosis. Journal of Immunology, 196, 3124–3134.

    Article  CAS  Google Scholar 

  33. Krmpotic, A., Bubic, I., Polic, B., Lucin, P., & Jonjic, S. (2003). Pathogenesis of murine cytomegalovirus infection. Microbes and Infection, 5, 1263–1277.

    Article  CAS  PubMed  Google Scholar 

  34. Brisse, E., Imbrechts, M., Mitera, T., Vandenhaute, J., Wouters, C. H., Snoeck, R., et al. (2017). Lytic viral replication and immunopathology in a cytomegalovirus-induced mouse model of secondary hemophagocytic lymphohistiocytosis. Virology Journal, 14, 240.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Put, K., Brisse, E., Avau, A., Imbrechts, M., Mitera, T., Janssens, R., et al. (2016). IDO1 deficiency does not affect disease in mouse models of systemic juvenile idiopathic arthritis and secondary hemophagocytic lymphohistiocytosis. PLoS One, 11, e0150075.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Brisse, E., Imbrechts, M., Mitera, T., Vandenhaute, J., Berghmans, N., Boon, L., et al. (2018). Lymphocyte-independent pathways underlie the pathogenesis of murine cytomegalovirus-associated secondary haemophagocytic lymphohistiocytosis. Clinical and Experimental Immunology, 192(1), 104–119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zakaryan, H., Cholakyans, V., Simonyan, L., Misakyan, A., Karalova, E., Chavushyan, A., et al. (2015). A study of lymphoid organs and serum proinflammatory cytokines in pigs infected with African swine fever virus genotype II. Archives of Virology, 160, 1407–1414.

    Article  CAS  PubMed  Google Scholar 

  38. Karalyan, Z. R., Ter-Pogossyan, Z. R., Karalyan, N. Y., Semerjyan, Z. B., Tatoyan, M. R., Karapetyan, S. A., et al. (2017). Hemophagocytic lymphohistiocytosis in acute African swine fever clinic. Veterinary Immunology and Immunopathology, 187, 64–68.

    Article  CAS  PubMed  Google Scholar 

  39. Cron, R. Q., Behrens, E. M., Shakoory, B., Ramanan, A. V., & Chatham, W. W. (2015). Does viral hemorrhagic fever represent reactive hemophagocytic syndrome? Journal of Rheumatoly, 42, 1078–1080.

    Article  CAS  Google Scholar 

  40. Clement, J., Colson, P., Saegeman, V., Lagrou, K., & Van Ranst, M. (2016). “Bedside assessment” of acute hantavirus infections and their possible classification into the spectrum of haemophagocytic syndromes. European Journal of Clinical Microbiology & Infectious Diseases, 35, 1101–1106.

    Article  CAS  Google Scholar 

  41. Wan Jamaludin, W. F., Periyasamy, P., Wan Mat, W. R., & Abdul Wahid, S. F. (2015). Dengue infection associated hemophagocytic syndrome: Therapeutic interventions and outcome. Journal of Clinical Virology, 69, 91–95.

    Article  PubMed  Google Scholar 

  42. Ab-Rahman, H. A., Rahim, H., Abubakar, S., & Wong, P. F. (2016). Macrophage activation syndrome-associated markers in severe dengue. International Journal of Medical Sciences, 13, 179–186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ellis, E. M., Sharp, T. M., Pérez-Padilla, J., González, L., Poole-Smith, B. K., Lebo, E., et al. (2016). Incidence and risk factors for developing dengue-associated hemophagocytic lymphohistiocytosis in Puerto Rico, 2008–2013. PLoS Neglected Tropical Diseases, 10, 2008–2013.

    Article  Google Scholar 

  44. Hill-Batorski, L., Halfmann, P., Marzi, A., Lopes, T. J. S., Neumann, G., Feldmann, H., et al. (2015). Loss of interleukin 1 receptor antagonist enhances susceptibility to Ebola virus infection. The Journal of Infectious Diseases, 212, S329–S335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rajasekaran, S., Kruse, K., Kovey, K., Davis, A. T., Hassan, N. E., Ndika, A. N., et al. (2014). Therapeutic role of anakinra, an interleukin-1 receptor antagonist, in the management of secondary hemophagocytic lymphohistiocytosis/sepsis/multiple organ dysfunction/macrophage activating syndrome in critically ill children. Pediatric Critical Care Medicine, 15, 401–408.

    Article  PubMed  Google Scholar 

  46. Miettunen, P. M., Narendran, A., Jayanthan, A., Behrens, E. M., & Cron, R. Q. (2011). Successful treatment of severe paediatric rheumatic disease-associated macrophage activation syndrome with interleukin-1 inhibition following conventional immunosuppressive therapy: Case series with 12 patients. Rheumatology, 50, 417–419.

    Article  CAS  PubMed  Google Scholar 

  47. Brown, D. E., McCoy, M. W., Pilonieta, M. C., Nix, R. N., & Detweiler, C. S. (2010). Chronic murine typhoid fever is a natural model of secondary hemophagocytic lymphohistiocytosis. PLoS One, 5, e9441.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. McCoy, M. W., Moreland, S. M., & Detweiler, C. S. (2012). Hemophagocytic macrophages in murine typhoid fever have an anti-inflammatory phenotype. Infection and Immunity, 80, 3642–3649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yanagimachi, M., Goto, H., Miyamae, T., Kadota, K., Imagawa, T., Mori, M., et al. (2011). Association of IRF5 polymorphisms with susceptibility to hemophagocytic lymphohistiocytosis in children. Journal of Clinical Immunology, 31, 946–951.

    Article  PubMed  Google Scholar 

  50. Yanagimachi, M., Naruto, T., Miyamae, T., Hara, T., Kikuchi, M., Hara, R., et al. (2011). Association of IRF5 polymorphisms with susceptibility to macrophage activation syndrome in patients with juvenile idiopathic arthritis. The Journal of Rheumatology, 38, 769–774.

    Article  CAS  PubMed  Google Scholar 

  51. Takaoka, A., Yanai, H., Kondo, S., Duncan, G., Negishi, H., Mizutani, T., et al. (2005). Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors. Nature, 434, 243–249.

    Article  CAS  PubMed  Google Scholar 

  52. Canna, S. W., de Jesus, A. A., Gouni, S., Brooks, S. R., Marrero, B., Liu, Y., et al. (2014). An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nature Genetics, 46, 1140–1146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Canna, S. W., Girard, C., Malle, L., de Jesus, A., Romberg, N., Kelsen, J., et al. (2016). Life-threatening NLRC4-associated hyperinflammation successfully treated with Interleukin-18 inhibition. Journal of Allergy and Clinical Immunology. https://doi.org/10.1016/j.jaci.2016.10.022

  54. Weaver, L. K., Chu, N., & Behrens, E. M. (2016). TLR9-mediated inflammation drives a Ccr2-independent peripheral monocytosis through enhanced extramedullary monocytopoiesis. Proceedings of the National Academy of Sciences of the United States of America, 113, 10944–10949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Behrens, E. M., Canna, S. W., Slade, K., Rao, S., Kreiger, P. A., Paessler, M., et al. (2011). Repeated TLR9 stimulation results in macrophage activation syndrome-like disease in mice. The Journal of Clinical Investigation, 121, 2264–2277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Canna, S. W., Wrobel, J., Chu, N., Kreiger, P. A., Paessler, M., & Behrens, E. M. (2013). Interferon-γ mediates anemia but is dispensable for fulminant toll-like receptor 9-induced macrophage activation syndrome and hemophagocytosis in mice. Arthritis and Rheumatism, 65, 1764–1775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Girard-Guyonvarc’h, C., Palomo, J., Martin, P., Rodriguez, E., Troccaz, S., Palmer, G., et al. (2018). Unopposed IL-18 signaling leads to severe TLR9-induced macrophage activation syndrome in mice. Blood, 131(13), 1430–1441.

    Article  PubMed  CAS  Google Scholar 

  58. Canna, S. W., Costa-Reis, P., & Bernal, W. E. (2014). Alternative activation of laser-captured murine hemophagocytes. Arthritis and Rheumatism, 66(6), 1666–1671.

    Article  CAS  Google Scholar 

  59. Schaer, D. J., Schleiffenbaum, B., Kurrer, M., Imhof, A., Bächli, E., Fehr, J., et al. (2005). Soluble hemoglobin-haptoglobin scavenger receptor CD163 as a lineage-specific marker in the reactive hemophagocytic syndrome. European Journal of Haematology, 74, 6–10.

    Article  CAS  PubMed  Google Scholar 

  60. Bleesing, J., Prada, A., Siegel, D. M., Villanueva, J., Olson, J., Ilowite, N. T., et al. (2007). The diagnostic significance of soluble CD163 and soluble interleukin-2 receptor alpha-chain in macrophage activation syndrome and untreated new-onset systemic juvenile idiopathic arthritis. Arthritis and Rheumatism, 56, 965–971.

    Article  CAS  PubMed  Google Scholar 

  61. Zhang, N., Zheng, Q., Xiao, L., Wang, Y., Liu, J., Liang, S., et al. (2014). Establishment of HLH-like mouse model with CPG-ODN and IFN-γ. Zhonghua Xue Ye Xue Za Zhi, 35, 835–839.

    CAS  PubMed  Google Scholar 

  62. Shimazu, H., Munakata, S., Tashiro, Y., Salama, Y., Dhahri, D., Eiamboonsert, S., et al. (2017). Pharmacological targeting of plasmin prevents lethality in a murine model of macrophage activation syndrome. Blood, 130(1), 59–72.

    Article  CAS  PubMed  Google Scholar 

  63. Kaito, K., Kobayashi, M., Katayama, T., Otsubo, H., Ogasawara, Y., Sekita, T., et al. (1997). Prognostic factors of hemophagocytic syndrome in adults: Analysis of 34 cases. European Journal of Haematology, 59, 247–253.

    Article  CAS  PubMed  Google Scholar 

  64. Li, F., Yang, Y., Jin, F., Dehoedt, C., Rao, J., Zhou, Y., et al. (2015). Clinical characteristics and prognostic factors of adult hemophagocytic syndrome patients: A retrospective study of increasing awareness of a disease from a single-center in China. Orphanet Journal of Rare Diseases, 10(20), 1–9.

    Google Scholar 

  65. Ohyagi, H., Onai, N., Sato, T., Yotsumoto, S., Liu, J., Akiba, H., et al. (2013). Monocyte-derived dendritic cells perform hemophagocytosis to fine-tune excessive immune responses. Immunity, 39, 584–598.

    Article  CAS  PubMed  Google Scholar 

  66. Atteritano, M., David, A., Bagnato, G., Beninati, C., Frisina, A., Iaria, C., et al. (2012). Haemophagocytic syndrome in rheumatic patients. A systematic review. European Review for Medical and Pharmacological Sciences, 16, 1414–1424.

    CAS  PubMed  Google Scholar 

  67. Sikora, K. A., & Grom, A. A. (2011). Update on the pathogenesis and treatment of systemic idiopathic arthritis. Current Opinion in Pediatrics, 23, 640–646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. De Benedetti, F., Alonzi, T., Moretta, A., Lazzaro, D., Costa, P., Poli, V., et al. (1997). Interleukin 6 causes growth impairment in transgenic mice through a decrease in insulin-like growth factor-I. A model for stunted growth in children with chronic inflammation. The Journal of Clinical Investigation, 99, 643–650.

    Article  PubMed  PubMed Central  Google Scholar 

  69. De Benedetti, F., Rucci, N., Del Fattore, A., Peruzzi, B., Paro, R., Longo, M., et al. (2006). Impaired skeletal development in interleukin-6-transgenic mice: A model for the impact of chronic inflammation on the growing skeletal system. Arthritis and Rheumatism, 54, 3551–3563.

    Article  PubMed  CAS  Google Scholar 

  70. Strippoli, R., Carvello, F., Scianaro, R., De Pasquale, L., Vivarelli, M., Petrini, S., et al. (2012). Amplification of the response to Toll-like receptor ligands by prolonged exposure to interleukin-6 in mice: Implication for the pathogenesis of macrophage activation syndrome. Arthritis and Rheumatism, 64, 1680–1688.

    Article  CAS  PubMed  Google Scholar 

  71. Bracaglia, C., de Graaf, K., Pires Marafon, D., Guilhot, F., Ferlin, W., Prencipe, G., et al. (2016). Elevated circulating levels of interferon-gamma and interferon-gamma-induced chemokines characterize patients with macrophage activation syndrome complicating systemic juvenile idiopathic arthritis. Annals of the Rheumatic Diseases, 76, 166–172.

    Article  PubMed  CAS  Google Scholar 

  72. Prencipe, G., Caiello, I., Bracaglia, C., de Min, C., & De Benedetti, F. (2015). Neutralization of Interferon-gamma is efficacious in a mouse model of HLH secondary to chronic inflammation. Pediatric Rheumatology, 13, O29.

    Article  PubMed Central  Google Scholar 

  73. Bracaglia, C., Caiello, I., De Graaf, K., D’Ario, G., Guilhot, F., Ferlin, W., et al. (2015). Interferon-gamma (IFNg) in macrophage activation syndrome (MAS) associated with systemic juvenile idiopathic arthritis (SJIA): High levels in patients and role in a murine MAS model. Pediatric Rheumatology Online Journal, 13, O84.

    Article  PubMed Central  Google Scholar 

  74. Prencipe, G., Caiello, I., Pascarella, A., Grom, A. A., Bracaglia, C., Chatel, L., et al. (2017). Neutralization of interferon-γ reverts clinical and laboratory features in a mouse model of macrophage activation syndrome. The Journal of Allergy and Clinical Immunology, 141(4), 1439–1449.

    Article  PubMed  CAS  Google Scholar 

  75. Cifaldi, L., Prencipe, G., Caiello, I., Bracaglia, C., Locatelli, F., De Benedetti, F., et al. (2015). Inhibition of natural killer cell cytotoxicity by interleukin-6: Implications for the pathogenesis of macrophage activation syndrome. Arthritis & Rhematology, 67, 3037–3046.

    Article  CAS  Google Scholar 

  76. Villanueva, J., Lee, S., Giannini, E. H., Graham, T. B., Passo, M. H., Filipovich, A., et al. (2005). Natural killer cell dysfunction is a distinguishing feature of systemic onset juvenile rheumatoid arthritis and macrophage activation syndrome. Arthritis Research & Therapy, 7, R30–R37.

    Article  CAS  Google Scholar 

  77. Grom, A. A. (2004). Natural killer cell dysfunction: A common pathway in systemic-onset juvenile rheumatoid arthritis, macrophage activation syndrome, and hemophagocytic lymphohistiocytosis? Arthritis and Rheumatism, 50, 689–698.

    Article  PubMed  Google Scholar 

  78. Grom, A., Villanueva, J., Lee, S., Goldmuntz, E., Passo, M., & Filipovich, A. H. (2003). Natural killer cell dysfunction in patients with systemic-onset rheumatoid arthritis and macrophage activation syndrome. The Journal of Pediatrics, 142, 292–296.

    Article  CAS  PubMed  Google Scholar 

  79. Behrens, E. M., Beukelman, T., Paessler, M., & Cron, R. Q. (2007). Occult macrophage activation syndrome in patients with systemic juvenile idiopathic arthritis. The Journal of Rheumatology, 34, 1133–1138.

    PubMed  Google Scholar 

  80. Avau, A., Mitera, T., Put, S., Put, K., Brisse, E., Filtjens, J., et al. (2014). Systemic juvenile idiopathic arthritis-like syndrome in mice following stimulation of the immune system with freund’s complete adjuvant: Regulation by interferon-γ. Arthritis & Rhematology, 66, 1340–1351.

    Article  CAS  Google Scholar 

  81. Kessel, C., Lippitz, K., Weinhage, T., Hinze, C. H., Wittkowski, H., Holzinger, D., et al. (2017). Pro-inflammatory cytokine environments can drive IL-17 overexpression by γδT cells in systemic juvenile idiopathic arthritis. Arthritis & Rhematology, 69, 1480–1494.

    Article  CAS  Google Scholar 

  82. Milner, J. D., Orekov, T., Ward, J. M., Cheng, L., Torres-Velez, F., Junttila, I., et al. (2010). Sustained IL-4 exposure leads to a novel pathway for hemophagocytosis, inflammation, and tissue macrophage accumulation. Blood, 116, 2476–2483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Osugi, Y., Hara, J., Tagawa, S., Takai, K., Hosoi, G., Matsuda, Y., et al. (1997). Cytokine production regulating Th1 and Th2 cytokines in hemophagocytic lymphohistiocytosis. Blood, 89, 4100–4103.

    Article  CAS  PubMed  Google Scholar 

  84. Xu, X.-J., Tang, Y.-M., Song, H., Yang, S.-L., Xu, W.-Q., Zhao, N., et al. (2012). Diagnostic accuracy of a specific cytokine pattern in hemophagocytic lymphohistiocytosis in children. The Journal of Pediatrics, 160, 984–90.e1.

    Article  CAS  PubMed  Google Scholar 

  85. Tang, Y., Xu, X., Song, H., Yang, S., Shi, S., Wei, J., et al. (2008). Early diagnostic and prognostic significance of a specific Th1/Th2 cytokine pattern in children with haemophagocytic syndrome. British Journal of Haematology, 143, 84–91.

    Article  CAS  PubMed  Google Scholar 

  86. Chen, Y., Wang, Z., Luo, Z., Zhao, N., Yang, S., & Tang, Y. (2016). Comparison of Th1/Th2 cytokine profiles between primary and secondary haemophagocytic lymphohistiocytosis. Italian Journal of Pediatrics, 42, 50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Strippoli, R., Carvello, F., Scianaro, R., De Pasquale, L., Vivarelli, M., Petrini, S., et al. (2011). Chronic exposure to Interleukin-6 amplifies the response to Toll-like receptor ligands: Implication on the pathogenesis of macrophage activation syndrome. Pediatric Rheumatology, 9, P210.

    Article  PubMed Central  Google Scholar 

  88. Zoller, E. E., Lykens, J. E., Terrell, C. E., Aliberti, J., Filipovich, A. H., Henson, P. M., et al. (2011). Hemophagocytosis causes a consumptive anemia of inflammation. The Journal of Experimental Medicine, 208, 1203–1214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Reinhardt, R. L., Liang, H.-E., Bao, K., Price, A. E., Mohrs, M., Kelly, B. L., et al. (2015). A novel model for IFN-gamma-mediated autoinflammatory syndromes. Journal of Immunology, 194, 2358–2368.

    Article  CAS  Google Scholar 

  90. Shimozato, O., Ortaldo, J. R., Komschlies, K. L., & Young, H. A. (2002). Impaired NK cell development in an IFN-gamma transgenic mouse: Aberrantly expressed IFN-gamma enhances hematopoietic stem cell apoptosis and affects NK cell differentiation. Journal of Immunology, 168, 1746–1752.

    Article  CAS  Google Scholar 

  91. Wunderlich, M., Stockman, C., Devarajan, M., Ravishankar, N., Sexton, C., Kumar, A. R., et al. (2016). A xenograft model of macrophage activation syndrome amenable to anti-CD33 and anti-IL-6R treatment. JCI Insight, 1, 1–12.

    Article  Google Scholar 

  92. Bartels, K., Grenz, A., & Eltzschig, H. K. (2013). Hypoxia and inflammation are two sides of the same coin. Proceedings of the National Academy of Sciences of the United States of America, 110, 18351–18352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Imtiyaz, H. Z., & Simon, M. C. (2010). Hypoxia-inducible factors as essential regulators of inflammation. Current Topics in Microbiology and Immunology, 345, 105–120.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Huang, R., Hayashi, Y., Yan, X., Bu, J., Wang, J., Zhang, Y., et al. (2017). HIF1A is a critical downstream mediator for hemophagocytic lymphohistiocytosis. Haematologica, 102, 1956–1968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhao, L., Hua, T., Crowley, C., Ru, H., Ni, X., Shaw, N., et al. (2014). Structural analysis of asparaginyl endopeptidase reveals the activation mechanism and a reversible intermediate maturation stage. Cell Research, 24, 344–358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Manoury, B., Mazzeo, D., Fugger, L., Viner, N., Ponsford, M., Streeter, H., et al. (2002). Destructive processing by asparagine endopeptidase limits presentation of a dominant T cell epitope in MBP. Nature Immunology, 3, 169–174.

    Article  CAS  PubMed  Google Scholar 

  97. Chan, C., Abe, M., Hashimoto, N., Hao, C., Williams, I., Liu, X., et al. (2009). Mice lacking asparaginyl endopeptidase develop disorders resembling hemophagocytic syndrome. Proceedings of the National Academy of Sciences of the United States of America, 106, 468–473.

    Article  CAS  PubMed  Google Scholar 

  98. Ammann, S., Lehmberg, K., Stadt, U., Janka, G., Rensing-ehl, A., Klemann, C., et al. (2017). Primary and secondary hemophagocytic lymphohistiocytosis have different patterns of T-cell activation, differentiation and repertoire. European Journal of Immunology, 47, 364–373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Marsh, R. A. (2017). Diagnostic dilemmas in HLH: Can T-cell phenotyping help? European Journal of Immunology, 47, 240–243.

    Article  CAS  PubMed  Google Scholar 

  100. Bryceson, Y. T., Pende, D., Maul-Pavicic, A., Gilmour, K. C., Ufheil, H., Vraetz, T., et al. (2012). A prospective evaluation of degranulation assays in the rapid diagnosis of familial hemophagocytic syndromes. Blood, 119, 2754–2763.

    Article  CAS  PubMed  Google Scholar 

  101. Janka, G. E., & Lehmberg, K. (2013). Hemophagocytic lymphohistiocytosis: Pathogenesis and treatment. Hematology, 2013, 605–611.

    Article  PubMed  Google Scholar 

  102. Schäfer, E. J., Jung, W., & Korsten, P. (2016). Combination immunosuppressive therapy including rituximab for Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis in adult-onset Still’s disease. Case Reports in Rheumatology, 2016, 1–4.

    Article  Google Scholar 

  103. Buatois, V., Chatel, L., Cons, L., Lory, S., Richard, F., Guilhot, F., et al. (2017). Use of a mouse model to identify a blood biomarker for IFNγ activity in pediatric secondary hemophagocytic lymphohistiocytosis. Translational Research, 180, 37–52.e2.

    Article  CAS  PubMed  Google Scholar 

  104. Das, R., Guan, P., Sprague, L., Verbist, K., Tedrick, P., An, Q. A., et al. (2016). Janus kinase inhibition lessens inflammation and ameliorates disease in murine models of hemophagocytic lymphohistiocytosis. Blood, 127, 1666–1675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hsieh, W.-C., Lan, B.-S., Chen, Y.-L., Chang, Y., Chuang, H.-C., & Su, I.-J. (2010). Efficacy of peroxisome proliferator activated receptor agonist in the treatment of virus-associated haemophagocytic syndrome in a rabbit model. Antiviral Therapy, 15, 71–81.

    Article  CAS  PubMed  Google Scholar 

  106. Maschalidi, S., Sepulveda, F. E., Garrigue, A., Fischer, A., & de Saint Basile, G. (2016). Therapeutic effect of JAK1/2 blockade on the manifestations of hemophagocytic lymphohistiocytosis in mice. Blood, 128, 60–72.

    Article  CAS  PubMed  Google Scholar 

  107. Burn, T. N., Rood, J. E., Weaver, L., Kreiger, P. A., & Behrens, E. M. (2016). Murine hemophagocytic lymphohistiocytosis can occur in the absence of interferon-gamma. Journal of Immunology, 196(1 Suppl), 126.5.

    Google Scholar 

  108. Tesi, B., Sieni, E., Neves, C., Romano, F., Cetica, V., Cordeiro, A. I., et al. (2015). Hemophagocytic lymphohistiocytosis in 2 patients with underlying IFN-γ receptor deficiency. The Journal of Allergy and Clinical Immunology, 135, 1638–1641.

    Article  PubMed  Google Scholar 

  109. Tariq, G., Weiss, E., Goodspeed, W., Goldbach-Mansky, R., & Canna, S. (2016). IL-18 elevation in macrophage activation syndrome: Human evidence for a chronic set-point and murine evidence for a non-hematopoietic source. American College of Rheumatology. Annual Meeting Abstract, September Abstract nr 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Matthys .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brisse, E., Wouters, C.H., Matthys, P. (2019). Murine Models of Secondary Cytokine Storm Syndromes. In: Cron, R., Behrens, E. (eds) Cytokine Storm Syndrome. Springer, Cham. https://doi.org/10.1007/978-3-030-22094-5_29

Download citation

Publish with us

Policies and ethics