Skip to main content

The Intersections of Autoinflammation and Cytokine Storm

  • Chapter
  • First Online:

Abstract

Autoinflammation is a category of human immune dysregulation best exemplified by inborn errors in genes important for innate immunity. Though overproduction of cytokines is a mechanistic feature of most autoinflammatory diseases, only a few have been associated with the phenotype of Cytokine Storm. Rarely, the most severe presentations of some canonical autoinflammatory diseases have featured cytokine storm. Innate immune activation is also part of the pathogenesis of canonical cytokine storm disorders, like hemophagocytic lymphohistiocytosis. More recently, biomarker, mechanistic, and early treatment studies in patients with Still’s disease, or with NLRC4 or XIAP mutations, have placed the inflammasome-activated cytokine IL-18 at the center of the intersection of autoinflammation and cytokine storm.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Goldstein, B., Giroir, B., & Randolph, A. (2005). International pediatric sepsis consensus conference: Definitions for sepsis and organ dysfunction in pediatrics. Pediatric Critical Care Medicine, 6(1), 2–8. https://doi.org/10.1097/01.PCC.0000149131.72248.E6

    Article  PubMed  Google Scholar 

  2. Pras, E., Aksentijevich, I., Gruberg, L., Balow Jr., J. E., Prosen, L., Dean, M., et al. (1992). Mapping of a gene causing familial Mediterranean fever to the short arm of chromosome 16. The New England Journal of Medicine, 326(23), 1509–1513. https://doi.org/10.1056/NEJM199206043262301

    Article  CAS  PubMed  Google Scholar 

  3. McDermott, M. F., Aksentijevich, I., Galon, J., McDermott, E. M., Ogunkolade, B. W., Centola, M., et al. (1999). Germline mutations in the extracellular domains of the 55 kDa TNF receptor, TNFR1, define a family of dominantly inherited autoinflammatory syndromes. Cell, 97(1), 133–144.

    Article  CAS  PubMed  Google Scholar 

  4. Hoffman, H. M., Mueller, J. L., Broide, D. H., Wanderer, A. A., & Kolodner, R. D. (2001). Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome. Nature Genetics, 29(3), 301–305. https://doi.org/10.1038/ng756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Feldmann, J., Prieur, A. M., Quartier, P., Berquin, P., Certain, S., Cortis, E., et al. (2002). Chronic infantile neurological cutaneous and articular syndrome is caused by mutations in CIAS1, a gene highly expressed in polymorphonuclear cells and chondrocytes. American Journal of Human Genetics, 71(1), 198–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Aksentijevich, I., Nowak, M., Mallah, M., Chae, J. J., Watford, W. T., Hofmann, S. R., et al. (2002). De novo CIAS1 mutations, cytokine activation, and evidence for genetic heterogeneity in patients with neonatal-onset multisystem inflammatory disease (NOMID): A new member of the expanding family of pyrin-associated autoinflammatory diseases. Arthritis and Rheumatism, 46(12), 3340–3348. https://doi.org/10.1002/art.10688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. de Jesus, A. A., Canna, S. W., Liu, Y., & Goldbach-Mansky, R. (2015). Molecular mechanisms in genetically defined autoinflammatory diseases: Disorders of amplified danger signaling. Annual Review of Immunology, 33, 823–874. https://doi.org/10.1146/annurev-immunol-032414-112227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Agostini, L., Martinon, F., Burns, K., McDermott, M. F., Hawkins, P. N., & Tschopp, J. (2004). NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity, 20(3), 319–325.

    Article  CAS  PubMed  Google Scholar 

  9. Broz, P., & Dixit, V. M. (2016). Inflammasomes: Mechanism of assembly, regulation and signalling. Nature Reviews. Immunology, 16(7), 407–420. https://doi.org/10.1038/nri.2016.58

    Article  CAS  PubMed  Google Scholar 

  10. Park, Y. H., Wood, G., Kastner, D. L., & Chae, J. J. (2016). Pyrin inflammasome activation and RhoA signaling in the autoinflammatory diseases FMF and HIDS. Nature Immunology, 17(8), 914–921. https://doi.org/10.1038/ni.3457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Canna, S. W., de Jesus, A. A., Gouni, S., Brooks, S. R., Marrero, B., Liu, Y., et al. (2014). An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nature Genetics, 46(10), 1140–1146. https://doi.org/10.1038/ng.3089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Romberg, N., Al Moussawi, K., Nelson-Williams, C., Stiegler, A. L., Loring, E., Choi, M., et al. (2014). Mutation of NLRC4 causes a syndrome of enterocolitis and autoinflammation. Nature Genetics, 46(10), 1135–1139. https://doi.org/10.1038/ng.3066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Goldbach-Mansky, R., Dailey, N. J., Canna, S. W., Gelabert, A., Jones, J., Rubin, B. I., et al. (2006). Neonatal-onset multisystem inflammatory disease responsive to interleukin-1beta inhibition. The New England Journal of Medicine, 355(6), 581–592. https://doi.org/10.1056/NEJMoa055137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hawkins, P. N., Lachmann, H. J., Aganna, E., & McDermott, M. F. (2004). Spectrum of clinical features in Muckle-Wells syndrome and response to anakinra. Arthritis and Rheumatism, 50(2), 607–612. https://doi.org/10.1002/art.20033

    Article  CAS  PubMed  Google Scholar 

  15. Tsoukas, P., & Canna, S. W. (2017). No shortcuts: New findings reinforce why nuance is the rule in genetic autoinflammatory syndromes. Current Opinion in Rheumatology, 29(5), 506–515. https://doi.org/10.1097/BOR.0000000000000422

    Article  PubMed  Google Scholar 

  16. Manthiram, K., Zhou, Q., Aksentijevich, I., & Kastner, D. L. (2017). The monogenic autoinflammatory diseases define new pathways in human innate immunity and inflammation. Nature Immunology, 18(8), 832–842. https://doi.org/10.1038/ni.3777

    Article  CAS  PubMed  Google Scholar 

  17. Lykens, J. E., Terrell, C. E., Zoller, E. E., Risma, K., & Jordan, M. B. (2011). Perforin is a critical physiologic regulator of T-cell activation. Blood. https://doi.org/10.1182/blood-2010-12-324533

  18. Rood, J. E., Rao, S., Paessler, M., Kreiger, P. A., Chu, N., Stelekati, E., et al. (2016). ST2 contributes to T-cell hyperactivation and fatal hemophagocytic lymphohistiocytosis in mice. Blood, 127(4), 426–435. https://doi.org/10.1182/blood-2015-07-659813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jordan, M. B., Locatelli, F., Allen, C., de Benedetti, F., Grom, A., Ballabio, M., et al. (2015). Abstract: A novel targeted approach to the treatment of hemophagocytic lymphohistiocytosis (HLH) with an anti-interferon gamma (IFNγ) monoclonal antibody (mAb), NI-0501: First results from a pilot phase 2 study in children with primary HLH. Blood, 126(23), LBA-3.

    Article  Google Scholar 

  20. Rice, G., Patrick, T., Parmar, R., Taylor, C. F., Aeby, A., Aicardi, J., et al. (2007). Clinical and molecular phenotype of Aicardi-Goutieres syndrome. American Journal of Human Genetics, 81(4), 713–725. https://doi.org/10.1086/521373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tungler, V., Konig, N., Gunther, C., Engel, K., Fiehn, C., Smitka, M., et al. (2016). Response to: ‘JAK inhibition in STING-associated interferonopathy’ by Crow et al. Annals of the Rheumatic Diseases, 75(12), e76. https://doi.org/10.1136/annrheumdis-2016-210565

    Article  PubMed  Google Scholar 

  22. Aksentijevich, I., Masters, S. L., Ferguson, P. J., Dancey, P., Frenkel, J., van Royen-Kerkhoff, A., et al. (2009). An autoinflammatory disease with deficiency of the interleukin-1-receptor antagonist. The New England Journal of Medicine, 360(23), 2426–2437. https://doi.org/10.1056/NEJMoa0807865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mendonca, L. O., Malle, L., Donovan, F. X., Chandrasekharappa, S. C., Montealegre Sanchez, G. A., Garg, M., et al. (2017). Deficiency of interleukin-1 receptor antagonist (DIRA): Report of the first Indian patient and a novel deletion affecting IL1RN. Journal of Clinical Immunology, 37(5), 445–451. https://doi.org/10.1007/s10875-017-0399-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Koc, B., Oktenli, C., Bulucu, F., Karadurmus, N., Sanisoglu, S. Y., & Gul, D. (2007). The rate of pyrin mutations in critically ill patients with systemic inflammatory response syndrome and sepsis: A pilot study. The Journal of Rheumatology, 34(10), 2070–2075.

    CAS  PubMed  Google Scholar 

  25. Rodrigue-Gervais, I. G., & Saleh, M. (2010). Genetics of inflammasome-associated disorders: A lesson in the guiding principals of inflammasome function. European Journal of Immunology, 40(3), 643–648. https://doi.org/10.1002/eji.200940225

    Article  CAS  PubMed  Google Scholar 

  26. Schulert, G. S., Zhang, M., Fall, N., Husami, A., Kissell, D., Hanosh, A., et al. (2016). Whole-exome sequencing reveals mutations in genes linked to hemophagocytic lymphohistiocytosis and macrophage activation syndrome in fatal cases of H1N1 influenza. The Journal of Infectious Diseases, 213(7), 1180–1188. https://doi.org/10.1093/infdis/jiv550

    Article  CAS  PubMed  Google Scholar 

  27. Krebs, P., Crozat, K., Popkin, D., Oldstone, M. B., & Beutler, B. (2011). Disruption of MyD88 signaling suppresses hemophagocytic lymphohistiocytosis in mice. Blood, 117(24), 6582–6588. https://doi.org/10.1182/blood-2011-01-329607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zoller, E. E., Lykens, J. E., Terrell, C. E., Aliberti, J., Filipovich, A. H., Henson, P. M., et al. (2011). Hemophagocytosis causes a consumptive anemia of inflammation. The Journal of Experimental Medicine, 208(6), 1203–1214. https://doi.org/10.1084/jem.20102538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wunderlich, M., Stockman, C., Devarajan, M., Ravishankar, N., Sexton, C., Kumar, A. R., et al. (2016). A xenograft model of macrophage activation syndrome amenable to anti-CD33 and anti-IL-6R treatment. JCI Insight, 1(15), e88181. https://doi.org/10.1172/jci.insight.88181

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sepulveda, F. E., Maschalidi, S., Vosshenrich, C. A., Garrigue, A., Kurowska, M., Menasche, G., et al. (2014). A novel immunoregulatory role for NK cell cytotoxicity in protection from HLH-like immunopathology in mice. Blood, 125(9), 1427–1434. https://doi.org/10.1182/blood-2014-09-602946

    Article  CAS  PubMed  Google Scholar 

  31. Ombrello, M. J., Remmers, E. F., Tachmazidou, I., Grom, A., Foell, D., Haas, J. P., et al. (2015). HLA-DRB1∗11 and variants of the MHC class II locus are strong risk factors for systemic juvenile idiopathic arthritis. Proceedings of the National Academy of Sciences of the United States of America, 112(52), 15970–15975. https://doi.org/10.1073/pnas.1520779112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. De Benedetti, F., Brunner, H. I., Ruperto, N., Kenwright, A., Wright, S., Calvo, I., et al. (2012). Randomized trial of tocilizumab in systemic juvenile idiopathic arthritis. The New England Journal of Medicine, 367(25), 2385–2395. https://doi.org/10.1056/NEJMoa1112802

    Article  CAS  PubMed  Google Scholar 

  33. Ruperto, N., Brunner, H. I., Quartier, P., Constantin, T., Wulffraat, N., Horneff, G., et al. (2012). Two randomized trials of canakinumab in systemic juvenile idiopathic arthritis. The New England Journal of Medicine, 367(25), 2396–2406. https://doi.org/10.1056/NEJMoa1205099

    Article  CAS  PubMed  Google Scholar 

  34. Ombrello, M. J., Arthur, V. L., Remmers, E. F., Hinks, A., Tachmazidou, I., Grom, A. A., et al. (2016). Genetic architecture distinguishes systemic juvenile idiopathic arthritis from other forms of juvenile idiopathic arthritis: Clinical and therapeutic implications. Annals of the Rheumatic Diseases, 76(5), 906–913. https://doi.org/10.1136/annrheumdis-2016-210324

    Article  CAS  PubMed  Google Scholar 

  35. Shimizu, M., Nakagishi, Y., Inoue, N., Mizuta, M., Ko, G., Saikawa, Y., et al. (2015). Interleukin-18 for predicting the development of macrophage activation syndrome in systemic juvenile idiopathic arthritis. Clinical Immunology, 160(2), 277–281. https://doi.org/10.1016/j.clim.2015.06.005

    Article  CAS  PubMed  Google Scholar 

  36. Girard, C., Rech, J., Brown, M., Allali, D., Roux-Lombard, P., Spertini, F., et al. (2016). Elevated serum levels of free interleukin-18 in adult-onset Still’s disease. Rheumatology (Oxford), 55(12), 2237–2247. https://doi.org/10.1093/rheumatology/kew300

    Article  CAS  Google Scholar 

  37. Gabay, C., Fautrel, B., Rech, J., Spertini, F., Feist, E., Kotter, I., et al. (2018). Open-label, multicentre, dose-escalating phase II clinical trial on the safety and efficacy of tadekinig alfa (IL-18BP) in adult-onset Still’s disease. Annals of the Rheumatic Diseases. https://doi.org/10.1136/annrheumdis-2017-212608

  38. Weiss, E. S., Girard-Guyonvarc’h, C., Holzinger, D., de Jesus, A. A., Tariq, Z., Picarsic, J., et al. (2018). Interleukin-18 diagnostically distinguishes and pathogenically promotes human and murine macrophage activation syndrome. Blood, 131(13), 1442–1455. https://doi.org/10.1182/blood-2017-12-820852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liang, J., Alfano, D. N., Squires, J. E., Riley, M. M., Parks, W. T., Kofler, J., et al. (2017). Novel NLRC4 mutation causes a syndrome of perinatal autoinflammation with hemophagocytic lymphohistiocytosis, hepatosplenomegaly, fetal thrombotic vasculopathy, and congenital anemia and ascites. Pediatric and Developmental Pathology, 20(6), 498–505.

    Article  PubMed  Google Scholar 

  40. Moghaddas, F., Zeng, P., Zhang, Y., Schutzle, H., Brenner, S., Hofmann, S. R., et al. (2018). Autoinflammatory mutation in NLRC4 reveals an LRR-LRR oligomerization interface. The Journal of Allergy and Clinical Immunology. https://doi.org/10.1016/j.jaci.2018.04.033

  41. Canna, S. W., Girard, C., Malle, L., de Jesus, A., Romberg, N., Kelsen, J., et al. (2016). Life-threatening NLRC4-associated hyperinflammation successfully treated with Interleukin-18 inhibition. The Journal of Allergy and Clinical Immunology, 139(5), 1698–1701. https://doi.org/10.1016/j.jaci.2016.10.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bracaglia, C., Prencipe, G., Gatto, A., Pardeo, M., Lapeyre, G., Raganelli, L., et al. (2015). Anti interferon-gamma (IFN gamma) monoclonal antibody treatment in a child with NLRC4-related disease and severe hemophagocytic lymphohistiocytosis (HLH). Pediatric Blood & Cancer, 62, S123–S123.

    Article  Google Scholar 

  43. Bracaglia, C., de Graaf, K., Pires Marafon, D., Guilhot, F., Ferlin, W., Prencipe, G., et al. (2017). Elevated circulating levels of interferon-gamma and interferon-gamma-induced chemokines characterise patients with macrophage activation syndrome complicating systemic juvenile idiopathic arthritis. Annals of the Rheumatic Diseases, 76(1), 166–172. https://doi.org/10.1136/annrheumdis-2015-209020

    Article  CAS  PubMed  Google Scholar 

  44. Girard-Guyonvarc’h, C., Palomo, J., Martin, P., Rodriguez, E., Troccaz, S., Palmer, G., et al. (2018). Unopposed IL-18 signaling leads to severe TLR9-induced macrophage activation syndrome in mice. Blood, 131(13), 1430–1441. https://doi.org/10.1182/blood-2017-06-789552

    Article  CAS  PubMed  Google Scholar 

  45. Rigaud, S., Fondaneche, M. C., Lambert, N., Pasquier, B., Mateo, V., Soulas, P., et al. (2006). XIAP deficiency in humans causes an X-linked lymphoproliferative syndrome. Nature, 444(7115), 110–114. https://doi.org/10.1038/nature05257

    Article  CAS  PubMed  Google Scholar 

  46. Marsh, R. A., Madden, L., Kitchen, B. J., Mody, R., McClimon, B., Jordan, M. B., et al. (2010). XIAP deficiency: A unique primary immunodeficiency best classified as X-linked familial hemophagocytic lymphohistiocytosis and not as X-linked lymphoproliferative disease. Blood, 116(7), 1079–1082. https://doi.org/10.1182/blood-2010-01-256099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lawlor, K. E., Feltham, R., Yabal, M., Conos, S. A., Chen, K. W., Ziehe, S., et al. (2017). XIAP loss triggers RIPK3- and caspase-8-driven IL-1beta activation and cell death as a consequence of TLR-MyD88-induced cIAP1-TRAF2 degradation. Cell Reports, 20(3), 668–682. https://doi.org/10.1016/j.celrep.2017.06.073

    Article  CAS  PubMed  Google Scholar 

  48. Kenneth, N. S., & Duckett, C. S. (2012). IAP proteins: Regulators of cell migration and development. Current Opinion in Cell Biology, 24(6), 871–875. https://doi.org/10.1016/j.ceb.2012.11.004

    Article  CAS  PubMed  Google Scholar 

  49. Yabal, M., Muller, N., Adler, H., Knies, N., Gross, C. J., Damgaard, R. B., et al. (2014). XIAP restricts TNF- and RIP3-dependent cell death and inflammasome activation. Cell Reports, 7(6), 1796–1808. https://doi.org/10.1016/j.celrep.2014.05.008

    Article  CAS  PubMed  Google Scholar 

  50. Wada, T., Kanegane, H., Ohta, K., Katoh, F., Imamura, T., Nakazawa, Y., et al. (2014). Sustained elevation of serum interleukin-18 and its association with hemophagocytic lymphohistiocytosis in XIAP deficiency. Cytokine, 65(1), 74–78. https://doi.org/10.1016/j.cyto.2013.09.007

    Article  CAS  PubMed  Google Scholar 

  51. Gernez, Y., de Jesus, A. A., Alsaleem, H., Macaubas, C., Roy, A., Lovell, D., et al. (2019). Severe autoinflammation in 4 patients with C-terminal variants in cell division control protein 42 (CDC42) successfully treated with IL-1beta inhibition. The Journal of Allergy and Clinical Immunology, epub Jul 2. https://doi.org/10.1016/j.jaci.2019.06.017

  52. Speckmann, C., Lehmberg, K., Albert, M. H., Damgaard, R. B., Fritsch, M., Gyrd-Hansen, M., et al. (2013). X-linked inhibitor of apoptosis (XIAP) deficiency: The spectrum of presenting manifestations beyond hemophagocytic lymphohistiocytosis. Clinical Immunology, 149(1), 133–141. https://doi.org/10.1016/j.clim.2013.07.004

    Article  CAS  PubMed  Google Scholar 

  53. Kitamura, A., Sasaki, Y., Abe, T., Kano, H., & Yasutomo, K. (2014). An inherited mutation in NLRC4 causes autoinflammation in human and mice. The Journal of Experimental Medicine, 211(12), 2385–2396. https://doi.org/10.1084/jem.20141091

    Article  PubMed  PubMed Central  Google Scholar 

  54. Volker-Touw, C. M., de Koning, H. D., Giltay, J., de Kovel, C., van Kempen, T. S., Oberndorff, K., et al. (2016). Erythematous nodes, urticarial rash and arthralgias in a large pedigree with NLRC4-related autoinflammatory disease, expansion of the phenotype. The British Journal of Dermatology, 176(1), 244–248. https://doi.org/10.1111/bjd.14757

    Article  CAS  PubMed  Google Scholar 

  55. Kawasaki, Y., Oda, H., Ito, J., Niwa, A., Tanaka, T., Hijikata, A., et al. (2017). Identification of a high-frequency somatic NLRC4 mutation as a cause of autoinflammation by pluripotent cell-based phenotype dissection. Arthritis & Rheumatology, 69(2), 447–459. https://doi.org/10.1002/art.39960

    Article  CAS  Google Scholar 

  56. de Jager, W., Vastert, S. J., Beekman, J. M., Wulffraat, N. M., Kuis, W., Coffer, P. J., et al. (2009). Defective phosphorylation of interleukin-18 receptor beta causes impaired natural killer cell function in systemic-onset juvenile idiopathic arthritis. Arthritis and Rheumatism, 60(9), 2782–2793. https://doi.org/10.1002/art.24750

    Article  CAS  PubMed  Google Scholar 

  57. Put, K., Vandenhaute, J., Avau, A., van Nieuwenhuijze, A., Brisse, E., Dierckx, T., et al. (2017). Inflammatory gene expression profile and defective interferon-gamma and granzyme K in natural killer cells from systemic juvenile idiopathic arthritis patients. Arthritis & Rheumatology, 69(1), 213–224. https://doi.org/10.1002/art.39933

    Article  CAS  Google Scholar 

  58. Munoz, M., Eidenschenk, C., Ota, N., Wong, K., Lohmann, U., Kuhl, A. A., et al. (2015). Interleukin-22 induces interleukin-18 expression from epithelial cells during intestinal infection. Immunity, 42(2), 321–331. https://doi.org/10.1016/j.immuni.2015.01.011

    Article  CAS  PubMed  Google Scholar 

  59. Nowarski, R., Jackson, R., Gagliani, N., de Zoete, M. R., Palm, N. W., Bailis, W., et al. (2015). Epithelial IL-18 equilibrium controls barrier function in colitis. Cell, 163(6), 1444–1456. https://doi.org/10.1016/j.cell.2015.10.072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rauch, I., Deets, K. A., Ji, D. X., von Moltke, J., Tenthorey, J. L., Lee, A. Y., et al. (2017). NAIP-NLRC4 inflammasomes coordinate intestinal epithelial cell expulsion with eicosanoid and IL-18 release via activation of caspase-1 and -8. Immunity, 46(4), 649–659. https://doi.org/10.1016/j.immuni.2017.03.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chudnovskiy, A., Mortha, A., Kana, V., Kennard, A., Ramirez, J. D., Rahman, A., et al. (2016). Host-protozoan interactions protect from mucosal infections through activation of the inflammasome. Cell, 167(2), 444–456.e414. https://doi.org/10.1016/j.cell.2016.08.076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Shakoory, B., Carcillo, J. A., Chatham, W. W., Amdur, R. L., Zhao, H., Dinarello, C. A., et al. (2016). Interleukin-1 receptor blockade is associated with reduced mortality in sepsis patients with features of macrophage activation syndrome: Reanalysis of a prior phase III trial. Critical Care Medicine, 44(2), 275–281. https://doi.org/10.1097/CCM.0000000000001402

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott W. Canna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Canna, S.W. (2019). The Intersections of Autoinflammation and Cytokine Storm. In: Cron, R., Behrens, E. (eds) Cytokine Storm Syndrome. Springer, Cham. https://doi.org/10.1007/978-3-030-22094-5_24

Download citation

Publish with us

Policies and ethics