Skip to main content

Immunology of Cytokine Storm Syndromes: Natural Killer Cells

  • Chapter
  • First Online:
Book cover Cytokine Storm Syndrome

Abstract

Natural killer (NK) cells are innate immune lymphocytes that rapidly produce cytokines upon activation and kill target cells. NK cells have been of particular interest in primary hemophagocytic lymphohistiocytosis (pHLH) since all of the genetic defects associated with this disorder cause diminished cytotoxic capacity of NK cells and T lymphocytes, and assays of NK cell killing are used clinically for the diagnosis of HLH. Herein, we review human NK cell biology and the significance of alterations in NK cell function in the diagnosis and pathogenesis of HLH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yokoyama, W. M. (2013). Natural killer cells. In W. Paul (Ed.), Fundamental immunology (pp. 395–430). Philadelphia: Lippincott, Williams &Wilkins.

    Google Scholar 

  2. Sullivan, K. E., Delaat, C. A., Douglas, S. D., & Filipovich, A. H. (1998). Defective natural killer cell function in patients with hemophagocytic lymphohistiocytosis and in first degree relatives. Pediatric Research, 44, 465–468.

    Article  CAS  PubMed  Google Scholar 

  3. Caligiuri, M. A. (2008). Human natural killer cells. Blood, 112, 461–469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Freud, A. G., Mundy-Bosse, B. L., Yu, J., & Caligiuri, M. A. (2017). The broad spectrum of human natural killer cell diversity. Immunity, 47, 820–833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fehniger, T. A., Shah, M. H., Turner, M. J., VanDeusen, J. B., Whitman, S. P., Cooper, M. A., et al. (1999). Differential cytokine and chemokine gene expression by human NK cells following activation with IL-18 or IL-15 in combination with IL-12: Implications for the innate immune response. Journal of Immunology, 162, 4511–4520.

    CAS  Google Scholar 

  6. Fauriat, C., Long, E. O., Ljunggren, H. G., & Bryceson, Y. T. (2010). Regulation of human NK-cell cytokine and chemokine production by target cell recognition. Blood, 115, 2167–2176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cooper, M. A., Fehniger, T. A., Turner, S. C., Chen, K. S., Ghaheri, B. A., Ghayur, T., et al. (2001). Human natural killer cells: A unique innate immunoregulatory role for the CD56(bright) subset. Blood, 97, 3146–3151.

    Article  CAS  PubMed  Google Scholar 

  8. Lucas, M., Schachterle, W., Oberle, K., Aichele, P., & Diefenbach, A. (2007). Dendritic cells prime natural killer cells by trans-presenting interleukin 15. Immunity, 26, 503–517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nedvetzki, S., Sowinski, S., Eagle, R. A., Harris, J., Vely, F., Pende, D., et al. (2007). Reciprocal regulation of human natural killer cells and macrophages associated with distinct immune synapses. Blood, 109, 3776–3785.

    Article  CAS  PubMed  Google Scholar 

  10. Moretta, A. (2002). Natural killer cells and dendritic cells: Rendezvous in abused tissues. Nature Reviews. Immunology, 2, 957–964.

    Article  CAS  PubMed  Google Scholar 

  11. Waggoner, S. N., Cornberg, M., Selin, L. K., & Welsh, R. M. (2011). Natural killer cells act as rheostats modulating antiviral T cells. Nature, 481, 394–398.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Lang, P. A., Lang, K. S., Xu, H. C., Grusdat, M., Parish, I. A., Recher, M., et al. (2012). Natural killer cell activation enhances immune pathology and promotes chronic infection by limiting CD8+ T-cell immunity. Proceedings of the National Academy of Sciences of the United States of America, 109, 1210–1215.

    Article  CAS  PubMed  Google Scholar 

  13. O’Sullivan, T., Saddawi-Konefka, R., Vermi, W., Koebel, C. M., Arthur, C., White, J. M., et al. (2012). Cancer immunoediting by the innate immune system in the absence of adaptive immunity. The Journal of Experimental Medicine, 209, 1869–1882.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Loh, J., Chu, D. T., O’Guin, A. K., Yokoyama, W. M., & Virgin, H. W. (2005). Natural killer cells utilize both perforin and gamma interferon to regulate murine cytomegalovirus infection in the spleen and liver. Journal of Virology, 79, 661–667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Henter, J. I., Elinder, G., Soder, O., Hansson, M., Andersson, B., & Andersson, U. (1991). Hypercytokinemia in familial hemophagocytic lymphohistiocytosis. Blood, 78, 2918–2922.

    Article  CAS  PubMed  Google Scholar 

  16. Bracaglia, C., de Graaf, K., Pires Marafon, D., Guilhot, F., Ferlin, W., Prencipe, G., et al. (2017). Elevated circulating levels of interferon-gamma and interferon-gamma-induced chemokines characterise patients with macrophage activation syndrome complicating systemic juvenile idiopathic arthritis. Annals of the Rheumatic Diseases, 76, 166–172.

    Article  CAS  PubMed  Google Scholar 

  17. Jordan, M. B., Hildeman, D., Kappler, J., & Marrack, P. (2004). An animal model of hemophagocytic lymphohistiocytosis (HLH): CD8+ T cells and interferon gamma are essential for the disorder. Blood, 104, 735–743.

    Article  CAS  PubMed  Google Scholar 

  18. Pachlopnik Schmid, J., Ho, C. H., Chretien, F., Lefebvre, J. M., Pivert, G., Kosco-Vilbois, M., et al. (2009). Neutralization of IFNgamma defeats haemophagocytosis in LCMV-infected perforin- and Rab27a-deficient mice. EMBO Molecular Medicine, 1, 112–124.

    Article  PubMed  CAS  Google Scholar 

  19. Prencipe, G., Caiello, I., Pascarella, A., Grom, A. A., Bracaglia, C., Chatel, L., et al. (2017). Neutralization of IFN-gamma reverts clinical and laboratory features in a mouse model of macrophage activation syndrome. The Journal of Allergy and Clinical Immunology.

    Google Scholar 

  20. Behrens, E. M., Canna, S. W., Slade, K., Rao, S., Kreiger, P. A., Paessler, M., et al. (2011). Repeated TLR9 stimulation results in macrophage activation syndrome-like disease in mice. The Journal of Clinical Investigation, 121, 2264–2277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Prencipe, G., Caiello, I., Pascarella, A., Grom, A. A., Bracaglia, C., Chatel, L., et al. (2018). Neutralization of IFN-gamma reverts clinical and laboratory features in a mouse model of macrophage activation syndrome. The Journal of Allergy and Clinical Immunology, 141, 1439–1449.

    Article  CAS  PubMed  Google Scholar 

  22. Tesi, B., Sieni, E., Neves, C., Romano, F., Cetica, V., Cordeiro, A. I., et al. (2015). Hemophagocytic lymphohistiocytosis in 2 patients with underlying IFN-gamma receptor deficiency. The Journal of Allergy and Clinical Immunology, 135, 1638–1641.

    Article  PubMed  Google Scholar 

  23. Schoenborn, J. R., Dorschner, M. O., Sekimata, M., Santer, D. M., Shnyreva, M., Fitzpatrick, D. R., et al. (2007). Comprehensive epigenetic profiling identifies multiple distal regulatory elements directing transcription of the gene encoding interferon-gamma. Nature Immunology, 8, 732–742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mah, A. Y., & Cooper, M. A. (2016). Metabolic regulation of natural killer cell IFN-g production. Critical Reviews in Immunology, 36, 131–147.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hodge, D. L., Berthet, C., Coppola, V., Kastenmuller, W., Buschman, M. D., Schaughency, P. M., et al. (2014). IFN-gamma AU-rich element removal promotes chronic IFN-gamma expression and autoimmunity in mice. Journal of Autoimmunity, 53, 33–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lanier, L. L. (2008). Up on the tightrope: Natural killer cell activation and inhibition. Nature Immunology, 9, 495–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pazina, T., Shemesh, A., Brusilovsky, M., Porgador, A., & Campbell, K. S. (2017). Regulation of the functions of natural cytotoxicity receptors by interactions with diverse ligands and alterations in splice variant expression. Frontiers in Immunology, 8, 369.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Mace, E. M., Dongre, P., Hsu, H. T., Sinha, P., James, A. M., Mann, S. S., et al. (2014). Cell biological steps and checkpoints in accessing NK cell cytotoxicity. Immunology and Cell Biology, 92, 245–255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Malmberg, K. J., Carlsten, M., Bjorklund, A., Sohlberg, E., Bryceson, Y. T., & Ljunggren, H. G. (2017). Natural killer cell-mediated immunosurveillance of human cancer. Seminars in Immunology, 31, 20–29.

    Article  CAS  PubMed  Google Scholar 

  30. Colucci, F. (2017). The role of KIR and HLA interactions in pregnancy complications. Immunogenetics, 69, 557–565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Khakoo, S. I., Thio, C. L., Martin, M. P., Brooks, C. R., Gao, X., Astemborski, J., et al. (2004). HLA and NK cell inhibitory receptor genes in resolving hepatitis C virus infection. Science, 305, 872–874.

    Article  CAS  PubMed  Google Scholar 

  32. Elliott, J. M., & Yokoyama, W. M. (2011). Unifying concepts of MHC-dependent natural killer cell education. Trends in Immunology, 32, 364–372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cooper, M. A. (2016). Teach your NK cells well. Immunity, 45, 229–231.

    Article  CAS  PubMed  Google Scholar 

  34. Orr, M. T., Murphy, W. J., & Lanier, L. L. (2010). ʻUnlicensedʼ natural killer cells dominate the response to cytomegalovirus infection. Nature Immunology, 11, 321–327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wagner, J. A., Berrien-Elliott, M. M., Rosario, M., Leong, J. W., Jewell, B. A., Schappe, T., et al. (2017). Cytokine-induced memory-like differentiation enhances unlicensed natural killer cell antileukemia and FcgammaRIIIa-triggered responses. Biology of Blood and Marrow Transplantation, 23, 398–404.

    Article  CAS  PubMed  Google Scholar 

  36. Cooper, M. A., Fehniger, T. A., & Caligiuri, M. A. (2001). The biology of human natural killer-cell subsets. Trends in Immunology, 22, 633–640.

    Article  CAS  PubMed  Google Scholar 

  37. Romagnani, C., Juelke, K., Falco, M., Morandi, B., D’Agostino, A., Costa, R., et al. (2007). CD56brightCD16- killer Ig-like receptor- NK cells display longer telomeres and acquire features of CD56dim NK cells upon activation. Journal of Immunology, 178, 4947–4955.

    Article  CAS  Google Scholar 

  38. Chan, A., Hong, D. L., Atzberger, A., Kollnberger, S., Filer, A. D., Buckley, C. D., et al. (2007). CD56bright human NK cells differentiate into CD56dim cells: Role of contact with peripheral fibroblasts. Journal of Immunology, 179, 89–94.

    Article  CAS  Google Scholar 

  39. Freud, A. G., & Caligiuri, M. A. (2006). Human natural killer cell development. Immunological Reviews, 214, 56–72.

    Article  CAS  PubMed  Google Scholar 

  40. Villanueva, J., Lee, S., Giannini, E. H., Graham, T. B., Passo, M. H., Filipovich, A., et al. (2005). Natural killer cell dysfunction is a distinguishing feature of systemic onset juvenile rheumatoid arthritis and macrophage activation syndrome. Arthritis Research & Therapy, 7, R30–R37.

    Article  CAS  Google Scholar 

  41. Melsen, J. E., Lugthart, G., Lankester, A. C., & Schilham, M. W. (2016). Human circulating and tissue-resident CD56(bright) natural killer cell populations. Frontiers in Immunology, 7, 262.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. O’Leary, J. G., Goodarzi, M., Drayton, D. L., & von Andrian, U. H. (2006). T cell- and B cell-independent adaptive immunity mediated by natural killer cells. Nature Immunology, 7, 507–516.

    Article  PubMed  CAS  Google Scholar 

  43. Cooper, M. A., Elliott, J. M., Keyel, P. A., Yang, L., Carrero, J. A., & Yokoyama, W. M. (2009). Cytokine-induced memory-like natural killer cells. Proceedings of the National Academy of Sciences of the United States of America, 106, 1915–1919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sun, J. C., Beilke, J. N., & Lanier, L. L. (2009). Adaptive immune features of natural killer cells. Nature, 457, 557–561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Guma, M., Angulo, A., Vilches, C., Gomez-Lozano, N., Malats, N., & Lopez-Botet, M. (2004). Imprint of human cytomegalovirus infection on the NK cell receptor repertoire. Blood, 104, 3664–3671.

    Article  CAS  PubMed  Google Scholar 

  46. Rolle, A., & Brodin, P. (2016). Immune adaptation to environmental influence: The case of NK cells and HCMV. Trends in Immunology, 37, 233–243.

    Article  PubMed  CAS  Google Scholar 

  47. Kuijpers, T. W., Baars, P. A., Dantin, C., van den Burg, M., van Lier, R. A., & Roosnek, E. (2008). Human NK cells can control CMV infection in the absence of T cells. Blood, 112, 914–915.

    Article  CAS  PubMed  Google Scholar 

  48. Lopez-Verges, S., Milush, J. M., Schwartz, B. S., Pando, M. J., Jarjoura, J., York, V. A., et al. (2011). Expansion of a unique CD57(+)NKG2Chi natural killer cell subset during acute human cytomegalovirus infection. Proceedings of the National Academy of Sciences of the United States of America, 108, 14725–14732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Foley, B., Cooley, S., Verneris, M. R., Pitt, M., Curtsinger, J., Luo, X., et al. (2012). Cytomegalovirus reactivation after allogeneic transplantation promotes a lasting increase in educated NKG2C+ natural killer cells with potent function. Blood, 119, 2665–2674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lee, J., Zhang, T., Hwang, I., Kim, A., Nitschke, L., Kim, M., et al. (2015). Epigenetic modification and antibody-dependent expansion of memory-like NK cells in human cytomegalovirus-infected individuals. Immunity, 42, 431–442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Schlums, H., Cichocki, F., Tesi, B., Theorell, J., Beziat, V., Holmes, T. D., et al. (2015). Cytomegalovirus infection drives adaptive epigenetic diversification of NK cells with altered signaling and effector function. Immunity, 42, 443–456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Malmberg, K. J., Beziat, V., & Ljunggren, H. G. (2012). Spotlight on NKG2C and the human NK-cell response to CMV infection. European Journal of Immunology, 42, 3141–3145.

    Article  CAS  PubMed  Google Scholar 

  53. Luetke-Eversloh, M., Hammer, Q., Durek, P., Nordstrom, K., Gasparoni, G., Pink, M., et al. (2014). Human cytomegalovirus drives epigenetic imprinting of the IFNG locus in NKG2Chi natural killer cells. PLoS Pathogens, 10, e1004441.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Keppel, M. P., Yang, L., & Cooper, M. A. (2013). Murine NK cell intrinsic cytokine-induced memory-like responses are maintained following homeostatic proliferation. Journal of Immunology, 190, 4754–4762.

    Article  CAS  Google Scholar 

  55. Romee, R., Rosario, M., Berrien-Elliott, M. M., Wagner, J. A., Jewell, B. A., Schappe, T., et al. (2016). Cytokine-induced memory-like natural killer cells exhibit enhanced responses against myeloid leukemia. Science Translational Medicine, 8(357), 357ra123.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Romee, R., Schneider, S. E., Leong, J. W., Chase, J. M., Keppel, C. R., Sullivan, R. P., et al. (2012). Cytokine activation induces human memory-like NK cells. Blood, 120, 4751–4760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Leong, J. W., Chase, J. M., Romee, R., Schneider, S. E., Sullivan, R. P., Cooper, M. A., et al. (2014). Preactivation with IL-12, IL-15, and IL-18 induces CD25 and a functional high-affinity IL-2 receptor on human cytokine-induced memory-like natural killer cells. Biology of Blood and Marrow Transplantation, 20, 463–473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ni, J., Miller, M., Stojanovic, A., Garbi, N., & Cerwenka, A. (2012). Sustained effector function of IL-12/15/18-preactivated NK cells against established tumors. The Journal of Experimental Medicine, 209, 2351–2365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mace, E. M., & Orange, J. S. (2016). Genetic causes of human NK cell deficiency and their effect on NK cell subsets. Frontiers in Immunology, 7, 545.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Brown, M. G., Dokun, A. O., Heusel, J. W., Smith, H. R., Beckman, D. L., Blattenberger, E. A., et al. (2001). Vital involvement of a natural killer cell activation receptor in resistance to viral infection. Science, 292, 934–937.

    Article  CAS  PubMed  Google Scholar 

  61. Martin, M. P., & Carrington, M. (2013). Immunogenetics of HIV disease. Immunological Reviews, 254, 245–264.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Imai, K., Matsuyama, S., Miyake, S., Suga, K., & Nakachi, K. (2000). Natural cytotoxic activity of peripheral-blood lymphocytes and cancer incidence: An 11-year follow-up study of a general population. Lancet, 356, 1795–1799.

    Article  CAS  PubMed  Google Scholar 

  63. Knorr, D. A., Bachanova, V., Verneris, M. R., & Miller, J. S. (2014). Clinical utility of natural killer cells in cancer therapy and transplantation. Seminars in Immunology, 26, 161–172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Berrien-Elliott, M. M., Romee, R., & Fehniger, T. A. (2015). Improving natural killer cell cancer immunotherapy. Current Opinion in Organ Transplantation, 20, 671–680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ruggeri, L., Capanni, M., Urbani, E., Perruccio, K., Shlomchik, W. D., Tosti, A., et al. (2002). Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science, 295, 2097–2100.

    Article  CAS  PubMed  Google Scholar 

  66. Hiby, S. E., Walker, J. J., O’Shaughnessy, K. M., Redman, C. W., Carrington, M., Trowsdale, J., et al. (2004). Combinations of maternal KIR and fetal HLA-C genes influence the risk of preeclampsia and reproductive success. The Journal of Experimental Medicine, 200, 957–965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kulkarni, S., Martin, M. P., & Carrington, M. (2008). The Yin and Yang of HLA and KIR in human disease. Seminars in Immunology, 20, 343–352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fogel, L. A., Yokoyama, W. M., & French, A. R. (2013). Natural killer cells in human autoimmune disorders. Arthritis Research & Therapy, 15, 216.

    Article  CAS  Google Scholar 

  69. Spessott, W. A., Sanmillan, M. L., McCormick, M. E., Patel, N., Villanueva, J., Zhang, K., et al. (2015). Hemophagocytic lymphohistiocytosis caused by dominant-negative mutations in STXBP2 that inhibit SNARE-mediated membrane fusion. Blood, 125, 1566–1577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang, M., Bracaglia, C., Prencipe, G., Bemrich-Stolz, C. J., Beukelman, T., Dimmitt, R. A., et al. (2016). A heterozygous RAB27A mutation associated with delayed cytolytic granule polarization and hemophagocytic lymphohistiocytosis. Journal of Immunology, 196, 2492–2503.

    Article  CAS  Google Scholar 

  71. Sepulveda, F. E., Debeurme, F., Menasche, G., Kurowska, M., Cote, M., Pachlopnik Schmid, J., et al. (2013). Distinct severity of HLH in both human and murine mutants with complete loss of cytotoxic effector PRF1, RAB27A, and STX11. Blood, 121, 595–603.

    Article  CAS  PubMed  Google Scholar 

  72. Jessen, B., Kogl, T., Sepulveda, F. E., de Saint, B. G., Aichele, P., & Ehl, S. (2013). Graded defects in cytotoxicity determine severity of hemophagocytic lymphohistiocytosis in humans and mice. Frontiers in Immunology, 4, 448.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Zhang, K., Jordan, M. B., Marsh, R. A., Johnson, J. A., Kissell, D., Meller, J., et al. (2011). Hypomorphic mutations in PRF1, MUNC13-4, and STXBP2 are associated with adult-onset familial HLH. Blood, 118, 5794–5798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Cote, M., Menager, M. M., Burgess, A., Mahlaoui, N., Picard, C., Schaffner, C., et al. (2009). Munc18-2 deficiency causes familial hemophagocytic lymphohistiocytosis type 5 and impairs cytotoxic granule exocytosis in patient NK cells. The Journal of Clinical Investigation, 119, 3765–3773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sepulveda, F. E., Maschalidi, S., Vosshenrich, C. A., Garrigue, A., Kurowska, M., Menasche, G., et al. (2015). A novel immunoregulatory role for NK-cell cytotoxicity in protection from HLH-like immunopathology in mice. Blood, 125, 1427–1434.

    Article  CAS  PubMed  Google Scholar 

  76. Wouters, C. H., Ceuppens, J. L., & Stevens, E. A. (2002). Different circulating lymphocyte profiles in patients with different subtypes of juvenile idiopathic arthritis. Clinical and Experimental Rheumatology, 20, 239–248.

    CAS  PubMed  Google Scholar 

  77. Wulffraat, N. M., Rijkers, G. T., Elst, E., Brooimans, R., & Kuis, W. (2003). Reduced perforin expression in systemic juvenile idiopathic arthritis is restored by autologous stem-cell transplantation. Rheumatology (Oxford), 42, 375–379.

    Article  CAS  Google Scholar 

  78. Grom, A. A., Villanueva, J., Lee, S., Goldmuntz, E. A., Passo, M. H., & Filipovich, A. (2003). Natural killer cell dysfunction in patients with systemic-onset juvenile rheumatoid arthritis and macrophage activation syndrome. The Journal of Pediatrics, 142, 292–296.

    Article  CAS  PubMed  Google Scholar 

  79. de Jager, W., Vastert, S. J., Beekman, J. M., Wulffraat, N. M., Kuis, W., Coffer, P. J., et al. (2009). Defective phosphorylation of interleukin-18 receptor beta causes impaired natural killer cell function in systemic-onset juvenile idiopathic arthritis. Arthritis and Rheumatism, 60, 2782–2793.

    Article  PubMed  CAS  Google Scholar 

  80. Dalbeth, N., & Callan, M. F. (2002). A subset of natural killer cells is greatly expanded within inflamed joints. Arthritis and Rheumatism, 46, 1763–1772.

    Article  PubMed  Google Scholar 

  81. Pridgeon, C., Lennon, G. P., Pazmany, L., Thompson, R. N., Christmas, S. E., & Moots, R. J. (2003). Natural killer cells in the synovial fluid of rheumatoid arthritis patients exhibit a CD56bright,CD94bright,CD158negative phenotype. Rheumatology (Oxford), 42, 870–878.

    Article  CAS  Google Scholar 

  82. Vastert, S. J., van Wijk, R., D’Urbano, L. E., de Vooght, K. M., de Jager, W., Ravelli, A., et al. (2010). Mutations in the perforin gene can be linked to macrophage activation syndrome in patients with systemic onset juvenile idiopathic arthritis. Rheumatology (Oxford), 49, 441–449.

    Article  CAS  Google Scholar 

  83. Hazen, M. M., Woodward, A. L., Hofmann, I., Degar, B. A., Grom, A., Filipovich, A. H., et al. (2008). Mutations of the hemophagocytic lymphohistiocytosis-associated gene UNC13D in a patient with systemic juvenile idiopathic arthritis. Arthritis and Rheumatism, 58, 567–570.

    Article  CAS  PubMed  Google Scholar 

  84. Zhang, K., Biroschak, J., Glass, D. N., Thompson, S. D., Finkel, T., Passo, M. H., et al. (2008). Macrophage activation syndrome in patients with systemic juvenile idiopathic arthritis is associated with MUNC13-4 polymorphisms. Arthritis and Rheumatism, 58, 2892–2896.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Kaufman, K. M., Linghu, B., Szustakowski, J. D., Husami, A., Yang, F., Zhang, K., et al. (2014). Whole-exome sequencing reveals overlap between macrophage activation syndrome in systemic juvenile idiopathic arthritis and familial hemophagocytic lymphohistiocytosis. Arthritis & Rhematology, 66, 3486–3495.

    Article  CAS  Google Scholar 

  86. Zhang, M., Behrens, E. M., Atkinson, T. P., Shakoory, B., Grom, A. A., & Cron, R. Q. (2014). Genetic defects in cytolysis in macrophage activation syndrome. Current Rheumatology Reports, 16, 439.

    Article  PubMed  CAS  Google Scholar 

  87. Bracaglia, C., Prencipe, G., & De Benedetti, F. (2017). Macrophage activation syndrome: Different mechanisms leading to a one clinical syndrome. Pediatric Rheumatology Online Journal, 15, 5.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Cifaldi, L., Prencipe, G., Caiello, I., Bracaglia, C., Locatelli, F., De Benedetti, F., et al. (2015). Inhibition of natural killer cell cytotoxicity by interleukin-6: Implications for the pathogenesis of macrophage activation syndrome. Arthritis & Rhematology, 67, 3037–3046.

    Article  CAS  Google Scholar 

  89. Brisse, E., Wouters, C. H., Andrei, G., & Matthys, P. (2017). How viruses contribute to the pathogenesis of hemophagocytic lymphohistiocytosis. Frontiers in Immunology, 8, 1102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Su, H. C., Nguyen, K. B., Salazar-Mather, T. P., Ruzek, M. C., Dalod, M. Y., & Biron, C. A. (2001). NK cell functions restrain T cell responses during viral infections. European Journal of Immunology, 31, 3048–3055.

    Article  CAS  PubMed  Google Scholar 

  91. Henter, J. I., Horne, A., Arico, M., Egeler, R. M., Filipovich, A. H., Imashuku, S., et al. (2007). HLH-2004: Diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatric Blood & Cancer, 48, 124–131.

    Article  Google Scholar 

  92. Ravelli, A., Minoia, F., Davi, S., Horne, A., Bovis, F., Pistorio, A., et al. (2016). 2016 classification criteria for macrophage activation syndrome complicating systemic juvenile idiopathic arthritis: A European League Against Rheumatism/American College of Rheumatology/Paediatric Rheumatology International Trials Organisation Collaborative Initiative. Annals of the Rheumatic Diseases, 75, 481–489.

    Article  CAS  PubMed  Google Scholar 

  93. Schulert, G. S., Minoia, F., Bohnsack, J., Cron, R. Q., Hashad, S., Kone-Paut, I., et al. (2017). Biologic therapy modifies clinical and laboratory features of macrophage activation syndrome associated with systemic juvenile idiopathic arthritis. Arthritis Care & Research.

    Google Scholar 

  94. Bryceson, Y. T., Pende, D., Maul-Pavicic, A., Gilmour, K. C., Ufheil, H., Vraetz, T., et al. (2012). A prospective evaluation of degranulation assays in the rapid diagnosis of familial hemophagocytic syndromes. Blood, 119, 2754–2763.

    Article  CAS  PubMed  Google Scholar 

  95. Rubin, T. S., Zhang, K., Gifford, C., Lane, A., Choo, S., Bleesing, J. J., et al. (2017). Perforin and CD107a testing is superior to NK cell function testing for screening patients for genetic HLH. Blood, 129, 2993–2999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Weitzman, S. (2011). Approach to hemophagocytic syndromes. Hematology. American Society of Hematology. Education Program, 2011, 178–183.

    Article  PubMed  Google Scholar 

  97. Rigaud, S., Fondaneche, M. C., Lambert, N., Pasquier, B., Mateo, V., Soulas, P., et al. (2006). XIAP deficiency in humans causes an X-linked lymphoproliferative syndrome. Nature, 444, 110–114.

    Article  CAS  PubMed  Google Scholar 

  98. Shabrish, S., Gupta, M., & Madkaikar, M. (2016). A modified NK cell degranulation assay applicable for routine evaluation of NK cell function. Journal of Immunology Research, 2016, 3769590.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Cetica, V., Santoro, A., Gilmour, K. C., Sieni, E., Beutel, K., Pende, D., et al. (2010). STXBP2 mutations in children with familial haemophagocytic lymphohistiocytosis type 5. Journal of Medical Genetics, 47, 595–600.

    Article  CAS  PubMed  Google Scholar 

  100. Fontana, S., Parolini, S., Vermi, W., Booth, S., Gallo, F., Donini, M., et al. (2006). Innate immunity defects in Hermansky-Pudlak type 2 syndrome. Blood, 107, 4857–4864.

    Article  CAS  PubMed  Google Scholar 

  101. Marcenaro, S., Gallo, F., Martini, S., Santoro, A., Griffiths, G. M., Arico, M., et al. (2006). Analysis of natural killer-cell function in familial hemophagocytic lymphohistiocytosis (FHL): Defective CD107a surface expression heralds Munc13-4 defect and discriminates between genetic subtypes of the disease. Blood, 108, 2316–2323.

    Article  CAS  PubMed  Google Scholar 

  102. Argov, S., Johnson, D. R., Collins, M., Koren, H. S., Lipscomb, H., & Purtilo, D. T. (1986). Defective natural killing activity but retention of lymphocyte-mediated antibody-dependent cellular cytotoxicity in patients with the X-linked lymphoproliferative syndrome. Cellular Immunology, 100, 1–9.

    Article  CAS  PubMed  Google Scholar 

  103. Marsh, R. A., Madden, L., Kitchen, B. J., Mody, R., McClimon, B., Jordan, M. B., et al. (2010). XIAP deficiency: A unique primary immunodeficiency best classified as X-linked familial hemophagocytic lymphohistiocytosis and not as X-linked lymphoproliferative disease. Blood, 116, 1079–1082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Jessen, B., Bode, S. F., Ammann, S., Chakravorty, S., Davies, G., Diestelhorst, J., et al. (2013). The risk of hemophagocytic lymphohistiocytosis in Hermansky-Pudlak syndrome type 2. Blood, 121, 2943–2951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Romberg, N., Al Moussawi, K., Nelson-Williams, C., Stiegler, A. L., Loring, E., Choi, M., et al. (2014). Mutation of NLRC4 causes a syndrome of enterocolitis and autoinflammation. Nature Genetics, 46, 1135–1139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Canna, S. W., de Jesus, A. A., Gouni, S., Brooks, S. R., Marrero, B., Liu, Y., et al. (2014). An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nature Genetics, 46, 1140–1146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhang K, Wakefield E, Marsh R. 2016. Lymphoproliferative disease, X-linked. In Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A GeneReviews®. Seattle, WA: University of Washington, Seattle

    Google Scholar 

  108. Meazza, R., Tuberosa, C., Cetica, V., Falco, M., Parolini, S., Grieve, S., et al. (2014). Diagnosing XLP1 in patients with hemophagocytic lymphohistiocytosis. The Journal of Allergy and Clinical Immunology, 134(1381–7), e7.

    Google Scholar 

Download references

Acknowledgments

Work in French’s laboratory is supported by NIH RO1AI078994 and a grant from the Strategic Pharma-Academic Research Consortium. Work in Cooper’s laboratory is supported by NIH RO1AI127752.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Megan A. Cooper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

French, A.R., Cooper, M.A. (2019). Immunology of Cytokine Storm Syndromes: Natural Killer Cells. In: Cron, R., Behrens, E. (eds) Cytokine Storm Syndrome. Springer, Cham. https://doi.org/10.1007/978-3-030-22094-5_10

Download citation

Publish with us

Policies and ethics