Skip to main content

A Brief Introduction to Turbulence in Rotating and Stratified Fluids

  • Chapter
  • First Online:
Fluid Mechanics of Planets and Stars

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 595))

  • 950 Accesses

Abstract

This chapter discusses basic aspects of turbulent flows relevant for the small-scale fluid dynamics of planets and stars. We particularly focus on how geometrical confinement, rotation, and stratification affect the nature of turbulent motions at different spatial scales. We introduce a hierarchy of models from the celebrated theory of Kolmogorov valid for homogeneous and isotropic turbulence to gradually more realistic models including rotation and stratification effects. Emphasis is put on simple physical processes and qualitative observations and not on rigorous mathematical derivations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexakis, A. (2011). Two-dimensional behavior of three-dimensional magnetohydrodynamic flow with a strong guiding field. Physical Review E, 84, 056330.

    Article  Google Scholar 

  • Alexakis, A., & Biferale, L. (2018). Cascades and transitions in turbulent flows. Physics Reports,.

    Google Scholar 

  • Batchelor, G. K. (1953). The Theory of Homogeneous Turbulence. Cambridge Science Classics: Cambridge University Press. ISBN 9780521041171.

    Google Scholar 

  • Bellet, F., Godeferd, F. S., Scott, J. F., & Cambon, C. (2006). Wave turbulence in rapidly rotating flows. Journal of Fluid Mechanics, 562, 83–121.

    Article  MathSciNet  Google Scholar 

  • Benavides, S. J., & Alexakis, A. (2017). Critical transitions in thin layer turbulence. Journal of Fluid Mechanics, 822, 364–385.

    Article  MathSciNet  Google Scholar 

  • Billant, P., & Chomaz, J.-M. (2000a). Experimental evidence for a new instability of a vertical columnar vortex pair in a strongly stratified fluid. Journal of Fluid Mechanics, 418, 167–188.

    Article  MathSciNet  Google Scholar 

  • Billant, P., & Chomaz, J.-M. (2000b). Three-dimensional stability of a vertical columnar vortex pair in a stratified fluid. Journal of Fluid Mechanics, 419, 65–91.

    Article  MathSciNet  Google Scholar 

  • Billant, P., & Chomaz, J.-M. (2001). Self-similarity of strongly stratified inviscid flows. Physics of Fluids, 13(6), 1645–1651.

    Article  MathSciNet  Google Scholar 

  • Boffetta, G., & Musacchio, S. (2010). Evidence for the double cascade scenario in two-dimensional turbulence. Physical Review E, 82, 016307.

    Article  Google Scholar 

  • Boubnov, B. M., Gledzer, E. B., & Hopfinger, E. J. (1995). Stratified circular couette flow: Instability and flow regimes. Journal of Fluid Mechanics, 292, 333–358.

    Article  MathSciNet  Google Scholar 

  • Brethouwer, G., Billant, P., Lindborg, E., & Chomaz, J.-M. (2007). Scaling analysis and simulation of strongly stratified turbulent flows. Journal of Fluid Mechanics, 585, 343–368.

    Article  MathSciNet  Google Scholar 

  • Cabanes, S., Aurnou, J., Favier, B., & Le Bars, M. (2017). A laboratory model for deep-seated jets on the gas giants. Nature Physics, 13(4), 387.

    Article  Google Scholar 

  • Cambon, C., Mansour, N. N., & Godeferd, F. S. (1997). Energy transfer in rotating turbulence. Journal of Fluid Mechanics, 337, 303–332.

    Article  MathSciNet  Google Scholar 

  • Campagne, A., Gallet, B., Moisy, F., & Cortet, P.-P. (2014). Direct and inverse energy cascades in a forced rotating turbulence experiment. Physics of Fluids, 26(12), 125112.

    Article  Google Scholar 

  • Campagne, A., Machicoane, N., Gallet, B., Cortet, P.-P., & Moisy, F. (2016). Turbulent drag in a rotating frame. Journal of Fluid Mechanics, 794, R5.

    Article  Google Scholar 

  • Celani, A., Musacchio, S., & Vincenzi, D. (2010). Turbulence in more than two and less than three dimensions. Physical Review Letters, 104, 184506.

    Article  Google Scholar 

  • Chen, S., Ecke, R. E., Eyink, G. L., Rivera, M., Wan, M., & Xiao, Z. (2006). Physical mechanism of the two-dimensional inverse energy cascade. Physical Review Letters, 96, 084502.

    Article  Google Scholar 

  • Chertkov, M., Connaughton, C., Kolokolov, I., & Lebedev, V. (2007). Dynamics of energy condensation in two-dimensional turbulence. Physical Review Letters, 99, 084501.

    Article  Google Scholar 

  • Clarke, C., Carswell, B., & Carswell, R. F. (2007). Principles of astrophysical fluid dynamics. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Clercx, H. J. H., Nielsen, A. H., Torres, D. J., & Coutsias, E. A. (2001). Two-dimensional turbulence in square and circular domains with no-slip walls. European Journal of Mechanics - B/Fluids, 20(4), 557–576.

    Article  Google Scholar 

  • Couder, Y., Chomaz, J. M., & Rabaud, M. (1989). On the hydrodynamics of soap films. Physica D: Nonlinear Phenomena, 37(1), 384–405.

    Article  Google Scholar 

  • Davidson, P. A. (2013). Turbulence in rotating, stratified and electrically conducting fluids. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Delache, A., Cambon, C., & Godeferd, F. S. (2014). Scale by scale anisotropy in freely decaying rotating turbulence. Physics of Fluids, 26(2), 025104.

    Article  Google Scholar 

  • Favier, B. (2009). Modélisation et simulations en turbulence homogène anisotrope: effets de rotation et magnétohydrodynamique. Ph.D. thesis, Ecole Centrale de Lyon.

    Google Scholar 

  • Favier, B., Godeferd, F. S., & Cambon, C. (2010). On space and time correlations of isotropic and rotating turbulence. Physics of Fluids, 22(1), 015101.

    Article  Google Scholar 

  • Favier, B., Godeferd, F. S., Cambon, C., Delache, A., & Bos, W. J. T. (2011). Quasi-static magnetohydrodynamic turbulence at high reynolds number. Journal of Fluid Mechanics, 681, 434–461.

    Article  MathSciNet  Google Scholar 

  • Favier, B., Silvers, L. J., & Proctor, M. R. E. (2014). Inverse cascade and symmetry breaking in rapidly rotating Boussinesq convection. Physics of Fluids, 26, 096605.

    Article  Google Scholar 

  • Favier, B., Guervilly, C., & Knobloch, E. (2019). Subcritical turbulent condensate in rapidly rotating Rayleigh-Bénard convection. Journal of Fluid Mechanics, 864, R1.

    Google Scholar 

  • Frisch, U. (1995). Turbulence: the legacy of AN Kolmogorov. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Gallet, B. (2015). Exact two-dimensionalization of rapidly rotating large-reynolds-number flows. Journal of Fluid Mechanics, 783, 412–447.

    Article  MathSciNet  Google Scholar 

  • Galperin, B., & Read, P. L. (2019). Zonal jets: Phenomenology, genesis, and physics. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Galperin, R. M. B., Young, R. M., Sukoriansky, S., Dikovskaya, N., Read, P. L., Lancaster, A. J., et al. (2014). Cassini observations reveal a regime of zonostrophic macroturbulence on jupiter. Icarus, 229, 295–320.

    Article  Google Scholar 

  • Galtier, S. (2003). Weak inertial-wave turbulence theory. Physical Review E, 68, 015301.

    Article  Google Scholar 

  • Gence, J. N., & Frick, C. (2001). Birth of the triple correlations of vorticity in an homogenous turbulence submitted to a solid body rotation. Comptes Rendus de l’Académie des Sciences, 329(5), 351–356.

    MATH  Google Scholar 

  • Gharib, M., & Derango, P. (1989). A liquid film (soap film) tunnel to study two-dimensional laminar and turbulent shear flows. Physica D: Nonlinear Phenomena, 37(1), 406–416.

    Article  Google Scholar 

  • Huang, H.-P., Galperin, B., & Sukoriansky, S. (2001). Anisotropic spectra in two-dimensional turbulence on the surface of a rotating sphere. Physics of Fluids, 13(1), 225–240.

    Article  Google Scholar 

  • Jacquin, L., Leuchter, O., Cambon, C., & Mathieu, J. (1990). Homogeneous turbulence in the presence of rotation. Journal of Fluid Mechanics, 220, 1–52.

    Article  Google Scholar 

  • Julien, K., Rubio, A. M., Grooms, I., & Knobloch, E. (2012). Statistical and physical balances in low Rossby number Rayleigh-Bénard convection. Geophysical and Astrophysical Fluid Dynamics, 106, 392–428.

    Article  MathSciNet  Google Scholar 

  • Kolmogorov, A. N. (1941). The local structure of turbulence in incompressible viscous fluid for very large reynolds numbers. Comptes rendus de l’Académie des sciences de l’URSS, 30, 301–305.

    MathSciNet  Google Scholar 

  • Kraichnan, R. H. (1967). Inertial ranges in 2D turbulence. Physics of Fluids, 10, 1417–1423.

    Article  MathSciNet  Google Scholar 

  • Laurie, J., Boffetta, G., Falkovich, G., Kolokolov, I., & Lebedev, V. (2014). Universal profile of the vortex condensate in two-dimensional turbulence. Physical Review Letters, 113, 254503.

    Article  Google Scholar 

  • Le Reun, T., Favier, B., Barker, A. J., & Le Bars, M. (2017). Inertial wave turbulence driven by elliptical instability. Physical Review Letters, 119, 034502.

    Article  Google Scholar 

  • Lilly, D. K. (1983). Stratified turbulence and the mesoscale variability of the atmosphere. Journal of the Atmospheric Sciences, 40(3), 749–761.

    Article  Google Scholar 

  • Lindborg, E. (2006). The energy cascade in a strongly stratified fluid. Journal of Fluid Mechanics, 550, 207–242.

    Article  Google Scholar 

  • Ozmidov, R. V. (1965). On the turbulent exchange in a stably stratified ocean. Izvestiya - Academy of Sciences USSR, Atmospheric and oceanic physics, 1, 493–497.

    Google Scholar 

  • Paret, J., & Tabeling, P. (1997). Experimental observation of the two-dimensional inverse energy cascade. Physical Review Letters, 79, 4162–4165.

    Article  Google Scholar 

  • Pedlosky, J. (1992). Geophysical fluid dynamics. Springer study edition. New York: Springer.

    Google Scholar 

  • Poincaré, H. (1885). Sur l’équilibre d’une masse fluide animée d’un mouvement de rotation. Acta mathematica, 7(1), 259–380.

    Article  MathSciNet  Google Scholar 

  • Pouquet, A., Sen, A., Rosenberg, D., Mininni, P. D., & Baerenzung, J. (2013). Inverse cascades in turbulence and the case of rotating flows. Physica Scripta, T155, 014032.

    Article  Google Scholar 

  • Rhines, P. B. (1975). Waves and turbulence on a beta-plane. Journal of Fluid Mechanics, 69(3), 417–443.

    Article  Google Scholar 

  • Richardson, L. F. (1922). Weather prediction by numerical process.

    Google Scholar 

  • Riley, J. J., & deBruynKops, S. M. (2003). Dynamics of turbulence strongly influenced by buoyancy. Physics of Fluids, 15(7), 2047–2059.

    Article  MathSciNet  Google Scholar 

  • Sagaut, P., & Cambon, C. (2008). Homogeneous turbulence dynamics. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Sipp, D., Lauga, E., & Jacquin, L. (1999). Vortices in rotating systems: Centrifugal, elliptic and hyperbolic type instabilities. Physics of Fluids, 11(12), 3716–3728.

    Article  MathSciNet  Google Scholar 

  • Smith, L. M., Chasnov, J. R., & Waleffe, F. (1996). Crossover from two- to three-dimensional turbulence. Physical Review Letters, 77, 2467–2470.

    Article  Google Scholar 

  • Smith, L. M., & Yakhot, V. (1993). Bose condensation and small-scale structure generation in a random force driven 2d turbulence. Physical Review Letters, 71, 352–355.

    Article  Google Scholar 

  • Sukoriansky, S., Dikovskaya, N., & Galperin, B. (2007). On the arrest of inverse energy cascade and the rhines scale. Journal of the Atmospheric Sciences, 64(9), 3312–3327.

    Article  Google Scholar 

  • Vallis, G. K. (2006). Atmospheric and oceanic fluid dynamics. UK: Cambridge University Press.

    Book  Google Scholar 

  • Vallis, G. K., & Maltrud, M. E. (1993). Generation of mean flows and jets on a beta plane and over topography. Journal of Physical Oceanography, 23(7), 1346–1362.

    Article  Google Scholar 

  • Waite, M. L. (2011). Stratified turbulence at the buoyancy scale. Physics of Fluids, 23(6), 066602.

    Article  Google Scholar 

  • Xia, H., Punzmann, H., Falkovich, G., & Shats, M. G. (2008). Turbulence-condensate interaction in two dimensions. Physical Review Letters, 101, 194504.

    Article  Google Scholar 

  • Xia, H., Shats, M., & Falkovich, G. (2009). Spectrally condensed turbulence in thin layers. Physics of Fluids, 21, 125101.

    Article  Google Scholar 

  • Xia, H., Byrne, D., Falkovich, G., & Shats, M. (2011). Upscale energy transfer in thick turbulent fluid layers. Nature Physics, 7, 321–324.

    Article  Google Scholar 

  • Yarom, E., Vardi, Y., & Sharon, E. (2013). Experimental quantification of inverse energy cascade in deep rotating turbulence. Physics of Fluids, 25(8), 085105.

    Article  Google Scholar 

  • Yokoyama, N., & Takaoka, M. (2017). Hysteretic transitions between quasi-two-dimensional flow and three-dimensional flow in forced rotating turbulence. Phys. Rev. Fluids, 2, 092602.

    Article  Google Scholar 

  • Zeman, O. (1994). A note on the spectra and decay of rotating homogeneous turbulence. Physics of Fluids, 6(10), 3221–3223.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Favier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 CISM International Centre for Mechanical Sciences

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Favier, B. (2020). A Brief Introduction to Turbulence in Rotating and Stratified Fluids. In: Le Bars, M., Lecoanet, D. (eds) Fluid Mechanics of Planets and Stars. CISM International Centre for Mechanical Sciences, vol 595. Springer, Cham. https://doi.org/10.1007/978-3-030-22074-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22074-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22073-0

  • Online ISBN: 978-3-030-22074-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics