Skip to main content

Internal Waves and Tides in Stars and Giant Planets

  • Chapter
  • First Online:

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 595))

Abstract

Internal waves play an important role in tidal dissipation in stars and giant planets. This chapter provides a pedagogical introduction to the study of astrophysical tides, with an emphasis on the contributions of inertial waves and internal gravity waves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alvan, L., Brun, A. S., & Mathis, S. (2014). Theoretical seismology in 3D: Nonlinear simulations of internal gravity waves in solar-like stars. Astronomy & Astrophysics, 565, A42.

    Article  Google Scholar 

  • Backus, G., & Rieutord, M. (2017). Completeness of inertial modes of an incompressible inviscid fluid in a corotating ellipsoid. Physical Review E, 95, 053116.

    Article  Google Scholar 

  • Barker, A. J., & Ogilvie, G. I. (2010). On internal wave breaking and tidal dissipation near the centre of a solar-type star. Monthly Notices of the Royal Astronomical Society, 404, 1849–1868.

    Google Scholar 

  • Bryan, G. H. (1889). The waves on a rotating liquid spheroid of finite ellipticity. Philosophical Transactions of the Royal Society of London Series A, 180, 187–219.

    Article  Google Scholar 

  • Chandrasekhar, S. (1969). Ellipsoidal figures of equilibrium. New Haven: Yale University Press.

    MATH  Google Scholar 

  • Christensen-Dalsgaard, J., Dappen, W., Ajukov, S. V., et al. (1996). The current state of solar modeling. Science, 272, 1286–1292.

    Article  Google Scholar 

  • Dauxois, T., Joubaud, S., Odier, P., & Venaille, A. (2018). Instabilities of internal gravity wave beams. Annual Review of Fluid Mechanics, 50, 131–156.

    Article  MathSciNet  Google Scholar 

  • Dintrans, B., & Rieutord, M. (2000). Oscillations of a rotating star: A non-perturbative theory. Astronomy & Astrophysics, 354, 86–98.

    Google Scholar 

  • Favier, B., Barker, A. J., Baruteau, C., & Ogilvie, G. I. (2014). Non-linear evolution of tidally forced inertial waves in rotating fluid bodies. Monthly Notices of the Royal Astronomical Society, 439, 845–860.

    Article  Google Scholar 

  • French, R. G., McGhee-French, C. A., Nicholson, P. D., & Hedman, M. M. (2019). Kronoseismology III: Waves in Saturn’s inner C ring. Icarus, 319, 599–626.

    Article  Google Scholar 

  • Fuller, J., Luan, J., & Quataert, E. (2016). Resonance locking as the source of rapid tidal migration in the Jupiter and Saturn moon systems. Monthly Notices of the Royal Astronomical Society, 458, 3867–3879.

    Article  Google Scholar 

  • Goodman, J., & Lackner, C. (2009). Dynamical tides in rotating planets and stars. Astrophysical Journal, 696, 2054–2067.

    Article  Google Scholar 

  • Helled, R. (2019). The interiors of Jupiter and Saturn. In Read P., et al. (Eds.), Oxford research encyclopedia of planetary science. Oxford: Oxford University Press.

    Google Scholar 

  • Ivanov, P. B., & Papaloizou, J. C. B. (2010). Inertial waves in rotating bodies: A WKBJ formalism for inertial modes and a comparison with numerical results. Monthly Notices of the Royal Astronomical Society, 407, 1609–1630.

    Article  Google Scholar 

  • Ivers, D. J., Jackson, A., & Winch, D. (2015). Enumeration, orthogonality and completeness of the incompressible Coriolis modes in a sphere. Journal of Fluid Mechanics, 766, 468–498.

    Article  MathSciNet  Google Scholar 

  • Jouve, L., & Ogilvie, G. I. (2014). Direct numerical simulations of an inertial wave attractor in linear and nonlinear regimes. Journal of Fluid Mechanics, 745, 223–250.

    Article  MathSciNet  Google Scholar 

  • Lin, Y., & Ogilvie, G. I. (2018). Tidal dissipation in rotating fluid bodies: The presence of a magnetic field. Monthly Notices of the Royal Astronomical Society, 474, 1644–1656.

    Article  Google Scholar 

  • Lockitch, K. H., & Friedman, J. L. (1999). Where are the r-modes of isentropic stars? Astrophysical Journal, 521, 764–788.

    Article  Google Scholar 

  • Maas, L. R. M., & Lam, F. P. A. (1995). Geometric focusing of internal waves. Journal of Fluid Mechanics, 300, 1–41.

    Article  MathSciNet  Google Scholar 

  • Mirouh, G. M., Baruteau, C., Rieutord, M., & Ballot, J. (2016). Gravito-inertial waves in a differentially rotating spherical shell. Journal of Fluid Mechanics, 800, 213–247.

    Article  MathSciNet  Google Scholar 

  • Moore, D. W., & Saffman, P. G. (1969). The structure of free vertical shear layers in a rotating fluid and the motion produced by a slowly rising body. Philosophical Transactions of the Royal Society of London Series A, 264, 597–634.

    Article  Google Scholar 

  • Ogilvie, G. I. (2005). Wave attractors and the asymptotic dissipation rate of tidal disturbances. Journal of Fluid Mechanics, 543, 19–44.

    Article  MathSciNet  Google Scholar 

  • Ogilvie, G. I. (2009). Tidal dissipation in rotating fluid bodies: A simplified model. Monthly Notices of the Royal Astronomical Society, 396, 794–806.

    Article  Google Scholar 

  • Ogilvie, G. I. (2013). Tides in rotating barotropic fluid bodies: The contribution of inertial waves and the role of internal structure. Monthly Notices of the Royal Astronomical Society, 429, 613–632.

    Article  Google Scholar 

  • Ogilvie, G. I. (2014). Tidal dissipation in stars and giant planets. Annual Review of Astronomy and Astrophysics, 52, 171–210.

    Article  Google Scholar 

  • Ogilvie, G. I., & Lin, D. N. C. (2004). Tidal dissipation in rotating giant planets. Astrophysical Journal, 610, 477–509.

    Article  Google Scholar 

  • Phillips, O. M. (1981). Wave interactions—The evolution of an idea. Journal of Fluid Mechanics, 106, 215–227.

    Article  Google Scholar 

  • Prat, V., Lignières, F., & Ballot, J. (2016). Asymptotic theory of gravity modes in rotating stars I. Ray dynamics. Astronomy & Astrophysics, 587, A110.

    Google Scholar 

  • Rieutord, M., & Valdettaro, L. (2010). Viscous dissipation by tidally forced inertial modes in a rotating spherical shell. Journal of Fluid Mechanics, 643, 363–394.

    Article  MathSciNet  Google Scholar 

  • Rieutord, M., Georgeot, B., & Valdettaro, L. (2001). Inertial waves in a rotating spherical shell: attractors and asymptotic spectrum. Journal of Fluid Mechanics, 435, 103–144.

    Article  MathSciNet  Google Scholar 

  • Sridhar, S., & Tremaine, S. (1992). Tidal disruption of viscous bodies. Icarus, 95, 86–99.

    Article  Google Scholar 

  • Thompson, M. J., Toomre, J., Anderson, E. R., et al. (1996). Differential rotation and dynamics of the solar interior. Science, 272, 1300–1305.

    Article  Google Scholar 

  • Weinberg, N. N., Arras, P., Quataert, E., & Burkart, J. (2012). Nonlinear tides in close binary systems. Astrophysical Journal, 751, 136.

    Article  Google Scholar 

  • Weinberg, N. N., Sun, M., Arras, P., & Essick, R. (2017). Tidal dissipation in WASP-12. Astrophysical Journal, 849, L11.

    Article  Google Scholar 

  • Witte, M. G., & Savonije, G. J. (1999). Tidal evolution of eccentric orbits in massive binary systems. A study of resonance locking. Astronomy & Astrophysics, 350, 129–147.

    Google Scholar 

  • Wu, Y. (2005). Origin of tidal dissipation in Jupiter. I. Properties of inertial modes. Astrophysical Journal, 635, 674–687.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon I. Ogilvie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 CISM International Centre for Mechanical Sciences

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ogilvie, G.I. (2020). Internal Waves and Tides in Stars and Giant Planets. In: Le Bars, M., Lecoanet, D. (eds) Fluid Mechanics of Planets and Stars. CISM International Centre for Mechanical Sciences, vol 595. Springer, Cham. https://doi.org/10.1007/978-3-030-22074-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22074-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22073-0

  • Online ISBN: 978-3-030-22074-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics