Skip to main content

The Mathematics of Extinction Across Scales: From Populations to the Biosphere

  • Chapter
  • First Online:

Part of the book series: Mathematics of Planet Earth ((MPE,volume 5))

Abstract

The sixth mass extinction poses an unparalleled quantitative challenge to conservation biologists. Mathematicians and ecologists alike face the problem of developing models that can scale predictions of extinction rates from populations to the level of a species, or even to an entire ecosystem. We review some of the most basic stochastic and analytical methods of calculating extinction risk at different scales, including population viability analysis, stochastic metapopulation occupancy models, and the species–area relationship. We also consider two extensions of theory: the possibility of evolutionary rescue from extinction in a changing environment and the posthumous assignment of an extinction date from sighting records. In the case of the latter, we provide a new example using data on Spix’s macaw, the “rarest bird in the world,” to demonstrate the challenges associated with extinction date research.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abbott, K.C.: Does the pattern of population synchrony through space reveal if the Moran effect is acting? Oikos 116(6), 903–912 (2007)

    Article  Google Scholar 

  2. Abbott, K.C.: A dispersal-induced paradox: synchrony and stability in stochastic metapopulations. Ecol. Lett. 14(11), 1158–1169 (2011)

    Article  Google Scholar 

  3. Allendorf, F.W., Ryman, N.: The role of genetics in population viability analysis. In: Population Viability Analysis, pp. 50–85. University of Chicago Press, Chicago (2002)

    Google Scholar 

  4. Altizer, S., Harvell, D., Friedle, E.: Rapid evolutionary dynamics and disease threats to biodiversity. Trends Ecol. Evol. 18(11), 589–596 (2003)

    Article  Google Scholar 

  5. Araujo, S.B., Braga, M.P., Brooks, D.R., et al.: Understanding host-switching by ecological fitting. PLoS One 10(10), e0139, 225 (2015)

    Article  Google Scholar 

  6. Arrhenius, O.: Species and area. J. Ecol. 9(1), 95–99 (1921)

    Article  Google Scholar 

  7. Barnosky, A.D., Matzke, N., Tomiya, S., et al.: Has the earth’s sixth mass extinction already arrived? Nature 471(7336), 51–57 (2011)

    Article  Google Scholar 

  8. Bartlett, L.J., Newbold, T., Purves, D.W., et al.: Synergistic impacts of habitat loss and fragmentation on model ecosystems. Proc. R. Soc. B 283(1839), 20161, 027 (2016)

    Article  Google Scholar 

  9. Beissinger, S.R.: Population viability analysis: past, present, future. In: Population Viability Analysis, pp. 5–17. University of Chicago Press, Chicago (2002)

    Google Scholar 

  10. Bell, G., Gonzalez, A.: Adaptation and evolutionary rescue in metapopulations experiencing environmental deterioration. Science 332(6035), 1327–1330 (2011)

    Article  Google Scholar 

  11. Boakes, E.H., Rout, T.M., Collen, B.: Inferring species extinction: the use of sighting records. Methods Ecol. Evol. 6(6), 678–687 (2015)

    Article  Google Scholar 

  12. Bonsall, M.B., Hastings, A.: Demographic and environmental stochasticity in predator–prey metapopulation dynamics. J. Anim. Ecol. 73(6), 1043–1055 (2004)

    Article  Google Scholar 

  13. Boyce, M.S.: Population growth with stochastic fluctuations in the life table. Theor. Popul. Biol. 12(3), 366–373 (1977)

    Article  MATH  Google Scholar 

  14. Brook, B.W., Traill, L.W., Bradshaw, C.J.: Minimum viable population sizes and global extinction risk are unrelated. Ecol. Lett. 9(4), 375–382 (2006)

    Article  Google Scholar 

  15. Brook, B.W., Sodhi, N.S., Bradshaw, C.J.: Synergies among extinction drivers under global change. Trends Ecol. Evol. 23(8), 453–460 (2008)

    Article  Google Scholar 

  16. Brooks, D.R., Hoberg, E.P.: How will global climate change affect parasite–host assemblages? Trends Parasitol. 23(12), 571–574 (2007)

    Article  Google Scholar 

  17. Bull, J.C., Pickup, N.J., Pickett, B., et al.: Metapopulation extinction risk is increased by environmental stochasticity and assemblage complexity. Proc. R. Soc. Lond. B Biol. Sci. 274(1606), 87–96 (2007)

    Article  Google Scholar 

  18. Caswell, H.: Matrix Population Models. Wiley, Hoboken (2001)

    Google Scholar 

  19. Caughley, G.: Directions in conservation biology. J. Anim. Ecol. 63, 215–244 (1994)

    Article  Google Scholar 

  20. Ceballos, G., Ehrlich, P.R., Barnosky, A.D., et al.: Accelerated modern human–induced species losses: entering the sixth mass extinction. Sci. Adv. 1(5), e1400, 253 (2015)

    Article  Google Scholar 

  21. Charlesworth, B., Charlesworth, D.: The Evolutionary Effects of Finite Population Size: Basic Theory, vol. 42, chap. 5, pp. 195–244. Roberts and Company Publishers, Englewood (2012)

    Google Scholar 

  22. Chevin, L.M., Lande, R., Mace, G.M.: Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol. 8(4), e1000, 357 (2010)

    Article  Google Scholar 

  23. Clements, C.F., Worsfold, N.T., Warren, P.H., et al.: Experimentally testing the accuracy of an extinction estimator: Solow’s optimal linear estimation model. J. Anim. Ecol. 82(2), 345–354 (2013)

    Article  Google Scholar 

  24. Collar, N.: Extinction by assumption; or, the Romeo error on Cebu. Oryx 32(4), 239–244 (1998)

    Article  Google Scholar 

  25. De Castro, F., Bolker, B.: Mechanisms of disease-induced extinction. Ecol. Lett. 8(1), 117–126 (2005)

    Article  Google Scholar 

  26. Diamond, J.M., Ashmole, N., Purves, P.: The present, past and future of human-caused extinctions [and discussion]. Philos. Trans. R. Soc., B: Biol. Sci. 325(1228), 469–477 (1989)

    Article  Google Scholar 

  27. Dobson, A., Lafferty, K.D., Kuris, A.M., et al.: Homage to Linnaeus: how many parasites? How many hosts? Proc. Natl. Acad. Sci. 105(Supplement 1), 11482–11489 (2008)

    Article  Google Scholar 

  28. Dougherty, E.R., Carlson, C.J., Bueno, V.M., et al.: Paradigms for parasite conservation. Conserv. Biol. 30, 724–733 (2015)

    Article  Google Scholar 

  29. Drake, J.M.: Extinction times in experimental populations. Ecology 87(9), 2215–2220 (2006)

    Article  Google Scholar 

  30. Drake, J.M.: Tail probabilities of extinction time in a large number of experimental populations. Ecology 95(5), 1119–1126 (2014)

    Article  Google Scholar 

  31. Dunn, R.R., Harris, N.C., Colwell, R.K., et al.: The sixth mass coextinction: are most endangered species parasites and mutualists? Proc. R. Soc. Lond. B Biol. Sci. 276(1670), 3037–3045 (2009)

    Article  Google Scholar 

  32. Elías-Wolff, F., Eriksson, A., Manica, A., et al.: How Levins’ dynamics emerges from a Ricker metapopulation model. Theor. Ecol. 2(9), 173–183 (2016)

    Article  Google Scholar 

  33. Ellison, A.M.: It’s time to get real about conservation. Nature 538(7624), 141 (2016)

    Article  Google Scholar 

  34. Elphick, C.S., Roberts, D.L., Reed, J.M.: Estimated dates of recent extinctions for North American and Hawaiian birds. Biol. Conserv. 143(3), 617–624 (2010)

    Article  Google Scholar 

  35. Fisher, M.C., Henk, D.A., Briggs, C.J., et al.: Emerging fungal threats to animal, plant and ecosystem health. Nature 484(7393), 186–194 (2012)

    Article  Google Scholar 

  36. Fitzpatrick, J.W., Lammertink, M., Luneau, M.D., et al.: Ivory-billed woodpecker (Campephilus principalis) persists in continental North America. Science 308(5727), 1460–1462 (2005)

    Article  Google Scholar 

  37. Frank, S., Schmid-Hempel, P.: Mechanisms of pathogenesis and the evolution of parasite virulence. J. Evol. Biol. 21(2), 396–404 (2008)

    Article  Google Scholar 

  38. Getz, W.M.: A hypothesis regarding the abruptness of density dependence and the growth rate of populations. Ecology 77(7), 2014–2026 (1996)

    Article  Google Scholar 

  39. Getz, W.M., Haight, R.G.: Population Harvesting: Demographic Models of Fish, Forest, and Animal Resources, vol. 27. Princeton University Press, Princeton (1989)

    Google Scholar 

  40. Getz, W.M., Muellerklein, O.C., Salter, R.M., et al.: A web app for population viability and harvesting analyses. Nat. Resour. Model. 30, e12120 (2016)

    Article  Google Scholar 

  41. Gilarranz, L.J., Bascompte, J.: Spatial network structure and metapopulation persistence. J. Theor. Biol. 297, 11–16 (2012)

    Article  Google Scholar 

  42. Gilpin, M.E., Soulé M.E.: Minimum viable populations: processes of extinction. Conservation Biology: The Science of Scarcity and Diversity, pp. 19–34. Sinauer Associates Inc., Sunderland (1986)

    Google Scholar 

  43. Gomulkiewicz, R., Holt, R.D.: When does evolution by natural selection prevent extinction? Evolution 49(1), 201–207 (1995)

    Article  Google Scholar 

  44. Gotelli, N.J., Chao, A., Colwell, R.K., et al.: Specimen-based modeling, stopping rules, and the extinction of the ivory-billed woodpecker. Conserv. Biol. 26(1), 47–56 (2012)

    Article  Google Scholar 

  45. Gouveia, A.R., Bjørnstad, O.N., Tkadlec, E.: Dissecting geographic variation in population synchrony using the common vole in central Europe as a test bed. Ecol. Evol. 6(1), 212–218 (2016)

    Article  Google Scholar 

  46. Grilli, J., Barabás, G., Allesina, S.: Metapopulation persistence in random fragmented landscapes. PLoS Comput. Biol. 11(5), e1004, 251 (2015)

    Article  Google Scholar 

  47. Hanski, I.: Single-species metapopulation dynamics: concepts, models and observations. Biol. J. Linn. Soc. 42(1-2), 17–38 (1991)

    Article  Google Scholar 

  48. Hanski, I.: Metapopulation dynamics. Nature 396(6706), 41–49 (1998)

    Article  Google Scholar 

  49. Hanski, I., Ovaskainen, O.: The metapopulation capacity of a fragmented landscape. Nature 404(6779), 755–758 (2000)

    Article  Google Scholar 

  50. Hao, Y.Q., Brockhurst, M.A., Petchey, O.L., et al.: Evolutionary rescue can be impeded by temporary environmental amelioration. Ecol. Lett. 18(9), 892–898 (2015)

    Article  Google Scholar 

  51. Harte, J., Kitzes, J.: The use and misuse of species-area relationships in predicting climate-driven extinction. In: Saving a Million Species, pp. 73–86. Springer, Basel (2012)

    Chapter  Google Scholar 

  52. Harte, J., Smith, A.B., Storch, D.: Biodiversity scales from plots to biomes with a universal species–area curve. Ecol. Lett. 12(8), 789–797 (2009)

    Article  Google Scholar 

  53. He, F., Hubbell, S.P.: Species-area relationships always overestimate extinction rates from habitat loss. Nature 473(7347), 368–371 (2011)

    Article  Google Scholar 

  54. Jansen, V.A., Yoshimura, J.: Populations can persist in an environment consisting of sink habitats only. Proc. Natl. Acad. Sci. U. S. A. 95, 3696–3698 (1998)

    Article  Google Scholar 

  55. Johnson, W.E., Onorato, D.P., Roelke, M.E., et al.: Genetic restoration of the Florida panther. Science 329(5999), 1641–1645 (2010)

    Article  Google Scholar 

  56. Juniper, T.: Spix’s Macaw: the race to save the world’s rarest bird. Simon and Schuster, New York (2004)

    Google Scholar 

  57. Kéfi, S., Guttal, V., Brock, W.A., et al.: Early warning signals of ecological transitions: methods for spatial patterns. PLoS One 9(3), e92, 097 (2014)

    Article  Google Scholar 

  58. Kinzig, A.P., Harte, J.: Implications of endemics–area relationships for estimates of species extinctions. Ecology 81(12), 3305–3311 (2000)

    Google Scholar 

  59. Kitzes, J., Harte, J.: Beyond the species–area relationship: improving macroecological extinction estimates. Methods Ecol. Evol. 5(1), 1–8 (2014)

    Article  Google Scholar 

  60. Koh, L.P., Dunn, R.R., Sodhi, N.S., et al.: Species coextinctions and the biodiversity crisis. Science 305(5690), 1632–1634 (2004)

    Article  Google Scholar 

  61. Kolbert, E.: The Sixth Extinction: an Unnatural History. A&C Black, London (2014)

    Google Scholar 

  62. Lande, R.: Natural selection and random genetic drift in phenotypic evolution. Evolution 30, 314–334 (1976)

    Article  Google Scholar 

  63. Lande, R.: Risks of population extinction from demographic and environmental stochasticity and random catastrophes. Am. Nat. 142, 911–927 (1993)

    Article  Google Scholar 

  64. Lee, T.E., McCarthy, M.A., Wintle, B.A., et al.: Inferring extinctions from sighting records of variable reliability. J. Appl. Ecol. 51(1), 251–258 (2014)

    Article  Google Scholar 

  65. Leibold, M.A., Holyoak, M., Mouquet, N., et al.: The metacommunity concept: a framework for multi-scale community ecology. Ecol. Lett. 7(7), 601–613 (2004)

    Article  Google Scholar 

  66. Levins, R.: Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull. Entomol. Soc. Am. 15(3), 237–240 (1969)

    Google Scholar 

  67. Levins, R.: Extinction. Lectures on Mathematics in the Life Sciences, vol. 2, pp. 77–107 (1970)

    MATH  Google Scholar 

  68. Lindsey, H.A., Gallie, J., Taylor, S., et al.: Evolutionary rescue from extinction is contingent on a lower rate of environmental change. Nature 494(7438), 463–467 (2013)

    Article  Google Scholar 

  69. Lomolino, M.V.: Ecology’s most general, yet protean pattern: The species-area relationship. J. Biogeography 27(1), 17–26 (2000)

    Article  Google Scholar 

  70. MacArthur, R.H., Wilson, E.O.: Theory of Island Biogeography (MPB-1), vol. 1. Princeton University Press, Princeton (2015)

    Google Scholar 

  71. Maslo, B., Fefferman, N.H.: A case study of bats and white-nose syndrome demonstrating how to model population viability with evolutionary effects. Conserv. Biol. 29(4), 1176–1185 (2015)

    Article  Google Scholar 

  72. Matthews, D.P., Gonzalez, A.: The inflationary effects of environmental fluctuations ensure the persistence of sink metapopulations. Ecology 88(11), 2848–2856 (2007)

    Article  Google Scholar 

  73. McCallum, M.L.: Amphibian decline or extinction? Current declines dwarf background extinction rate. J. Herpetol. 41(3), 483–491 (2007)

    Google Scholar 

  74. McCune, J.: Species distribution models predict rare species occurrences despite significant effects of landscape context. J. Appl. Ecol. 53(6), 1871–1879 (2016)

    Article  Google Scholar 

  75. McKinney, M.L., Lockwood, J.L.: Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol. Evol. 14(11), 450–453 (1999)

    Article  Google Scholar 

  76. Melbourne, B.A., Hastings, A.: Extinction risk depends strongly on factors contributing to stochasticity. Nature 454(7200), 100–103 (2008)

    Article  Google Scholar 

  77. Milner-Gulland, E.: Catastrophe and hope for the saiga. Oryx 49(04), 577–577 (2015)

    Article  Google Scholar 

  78. Mora, C., Tittensor, D.P., Adl, S., et al.: How many species are there on earth and in the ocean? PLoS Biol. 9(8), e1001127 (2011)

    Article  Google Scholar 

  79. Myers, N.: The Sinking Ark. Pergamon Press, Oxford (1979)

    Google Scholar 

  80. Olson, D.H., Aanensen, D.M., Ronnenberg, K.L., et al.: Mapping the global emergence of Batrachochytrium dendrobatidis, the amphibian chytrid fungus. PLoS One 8(2), e56802 (2013)

    Article  Google Scholar 

  81. Pimiento, C., Clements, C.F.: When did Carcharocles megalodon become extinct? A new analysis of the fossil record. PLoS One 9(10), e111086 (2014)

    Google Scholar 

  82. Pounds, J.A., Bustamante, M.R., Coloma, L.A., et al.: Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439(7073), 161–167 (2006)

    Article  Google Scholar 

  83. Qiao, H., Soberón, J., Peterson, A.T.: No silver bullets in correlative ecological niche modelling: insights from testing among many potential algorithms for niche estimation. Methods Ecol. Evol. 6(10), 1126–1136 (2015)

    Article  Google Scholar 

  84. Raup, D.M., Sepkoski Jr., J.J.: Mass extinctions in the marine fossil record. Science 215(4539), 1501–1503 (1982)

    Article  Google Scholar 

  85. Régnier, C., Achaz, G., Lambert, A., et al.: Mass extinction in poorly known taxa. Proc. Natl. Acad. Sci. 112(25), 7761–7766 (2015)

    Article  Google Scholar 

  86. Roberts, D.L., Solow, A.R.: Flightless birds: when did the dodo become extinct? Nature 426(6964), 245–245 (2003)

    Article  Google Scholar 

  87. Roberts, D.L., Elphick, C.S., Reed, J.M.: Identifying anomalous reports of putatively extinct species and why it matters. Conserv. Biol. 24(1), 189–196 (2010)

    Article  Google Scholar 

  88. Robson, D., Whitlock, J.: Estimation of a truncation point. Biometrika 51(1/2), 33–39 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  89. Roy, M., Holt, R.D., Barfield, M.: Temporal autocorrelation can enhance the persistence and abundance of metapopulations comprised of coupled sinks. Am. Nat. 166(2), 246–261 (2005)

    Article  Google Scholar 

  90. Rybicki, J., Hanski, I.: Species–area relationships and extinctions caused by habitat loss and fragmentation. Ecol. Lett. 16(s1), 27–38 (2013)

    Article  Google Scholar 

  91. Scheffer, M., Bascompte, J., Brock, W.A., et al.: Early-warning signals for critical transitions. Nature 461(7260), 53–59 (2009)

    Article  Google Scholar 

  92. Scheffers, B.R., Yong, D.L., Harris, J.B.C., et al.: The world’s rediscovered species: back from the brink? PLoS One 6(7), e22531 (2011)

    Article  Google Scholar 

  93. Schiffers, K., Bourne, E.C., Lavergne, S., et al.: Limited evolutionary rescue of locally adapted populations facing climate change. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 368(1610), 20120,083 (2013)

    Article  Google Scholar 

  94. Schlichting, C.D., Pigliucci, M.: Phenotypic evolution: a reaction norm perspective. Sinauer Associates Incorporated, Sunderland (1998)

    Google Scholar 

  95. Sibley, D.A., Bevier, L.R., Patten, M.A., et al.: Ivory-billed or pileated woodpecker? Science 315(5818), 1495–1496 (2007)

    Article  Google Scholar 

  96. Skerratt, L.F., Berger, L., Speare, R., et al.: Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. EcoHealth 4(2), 125–134 (2007)

    Article  Google Scholar 

  97. Solow, A.R.: Inferring extinction from sighting data. Ecology 74(3), 962–964 (1993)

    Article  MathSciNet  Google Scholar 

  98. Solow, A.R.: Inferring extinction from a sighting record. Math. Biosci. 195(1), 47–55 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  99. Solow, A.R., Beet, A.R.: On uncertain sightings and inference about extinction. Conserv. Biol. 28(4), 1119–1123 (2014)

    Article  Google Scholar 

  100. Storch, D., Keil, P., Jetz, W.: Universal species-area and endemics-area relationships at continental scales. Nature 488(7409), 78–81 (2012)

    Article  Google Scholar 

  101. Strona, G., Galli, P., Fattorini, S.: Fish parasites resolve the paradox of missing coextinctions. Nat. Commun. 4, 1718 (2013)

    Article  Google Scholar 

  102. Taylor, S., Drielsma, M., Taylor, R., et al.: Applications of rapid evaluation of metapopulation persistence (REMP) in conservation planning for vulnerable fauna species. Environ. Manag. 57(6), 1281–1291 (2016)

    Article  Google Scholar 

  103. Thompson, C., Lee, T., Stone, L., et al.: Inferring extinction risks from sighting records. J. Theor. Biol. 338, 16–22 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  104. Urban, M.C.: Accelerating extinction risk from climate change. Science 348(6234), 571–573 (2015)

    Article  Google Scholar 

  105. Wiens, J.J.: Climate-related local extinctions are already widespread among plant and animal species. PLOS Biol. 14(12), e2001104 (2016)

    Article  Google Scholar 

  106. Williamson, M., Gaston, K.J., Lonsdale, W.: The species–area relationship does not have an asymptote! J. Biogeogr. 28(7), 827–830 (2001)

    Article  Google Scholar 

  107. Wright, S.: Isolation by distance under diverse systems of mating. Genetics 31(1), 39 (1946)

    Google Scholar 

  108. Wright, S.: The interpretation of population structure by f-statistics with special regard to systems of mating. Evolution pp. 395–420 (1965)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wayne M. Getz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Carlson, C.J., Burgio, K.R., Dallas, T.A., Getz, W.M. (2019). The Mathematics of Extinction Across Scales: From Populations to the Biosphere. In: Kaper, H., Roberts, F. (eds) Mathematics of Planet Earth. Mathematics of Planet Earth, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-030-22044-0_9

Download citation

Publish with us

Policies and ethics