Skip to main content

A Risk-Structured Mathematical Model of Buruli Ulcer Disease in Ghana

  • Chapter
  • First Online:
Mathematics of Planet Earth

Abstract

This chapter discusses a mathematical model for the spread of an infectious disease with transmission through a pathogen in an environment, including the effects of human contact with the environment. The model assumes a structured susceptible population consisting of both “low-risk” and “high-risk” individuals. It also includes the effects of shedding the pathogen by the infected population into the environment. The model has a disease-free equilibrium state, and a linear stability analysis shows three possible transmission routes. The model is applied to Buruli ulcer disease, a debilitating disease induced by Mycobacterium ulcerans. There is some uncertainty about the exact transmission path, but the bacteria is known to live in natural water environments. The model parameters are estimated from data on Buruli ulcer disease in Ghana. This chapter includes a sensitivity analysis of the total number of infected individuals to the parameters in the model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altizer, S., Ostfeld, R.S., Johnson, P.T., et al.: Climate change and infectious diseases: from evidence to a predictive framework. Science 341(6145), 514–519 (2013)

    Article  Google Scholar 

  2. Amofah, G., Bonsu, F., Tetteh, C., et al.: Buruli Ulcer in Ghana: results of a national case search. Emerg. Infect. Dis. 2, 167–170 (2002)

    Article  Google Scholar 

  3. Benbow, M.E., Williamson, H., Kimbirauskas, R., et al.: Aquatic invertebrates as unlikely vectors of Buruli ulcer disease. Emerg. Infect. Dis. 14(8), 1247 (2008)

    Article  Google Scholar 

  4. Benbow, M.E., Kimbirauskas, R., McIntosh, M.D., et al.: Aquatic macroinvertebrate assemblages of Ghana, West Africa: understanding the ecology of a neglected tropical disease. Ecohealth 11(2), 168–183 (2014)

    Google Scholar 

  5. Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57(1), 289–300 (1995)

    MathSciNet  MATH  Google Scholar 

  6. Blower, S.M., Dowlatabadi, H.: Sensitivity and uncertainty analysis of complex models of disease transmission: an HIV model, as an example. Int. Stat. Rev. 62(2), 229–243 (1994)

    Article  MATH  Google Scholar 

  7. Bonyah, E., Dontwi, I., Nyabadza, F.: A theoretical model for the transmission dynamics of the Buruli ulcer with saturated treatment. Comput. Math. Methods Med. 2014, 576039 (2014)

    Google Scholar 

  8. Breban, R.: Role of environmental persistence in pathogen transmission: a mathematical modeling approach. J. Math. Biol. 66, 535–546 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cook, A.: The Mengo Hospital Notes. Makerere College Medical School Library, Kampala (1897)

    Google Scholar 

  10. De Silva, M.T., Portaels, F., Pedrosa, J.: Aquatic insects and mycobacterium ulcerans: an association relevant to Buruli ulcer control. PLoS Med. 4, e63 (2007). https://doi.org/10.1371/journal.pmed.0040063

    Article  Google Scholar 

  11. De Silva, K.R., Eda, S., Lenhart, S.: Modeling environmental transmission of MAP infection in dairy cows. Math. Biosci. Eng. 4, 1001–1017 (2017)

    MathSciNet  MATH  Google Scholar 

  12. Diekmann, O., Heesterbeek, J.P.: Mathematical Epidemiology of Infectious Diseases. Wiley, Chichester (2000)

    MATH  Google Scholar 

  13. Diekmann, O., Heesterbeek, H., Britton, T.: Mathematical Tools for Understanding Infectious Disease Dynamics. Princeton University Press, Princeton (2012)

    Book  MATH  Google Scholar 

  14. Duker, A.A., Portaels, F., Hale, M.: Pathways of Mycobacterium ulcerans infection: a review. Environ. Int. 32, 567–573 (2006)

    Article  Google Scholar 

  15. Feller, E.C., Pearson, E.S.: Tests for rank correlation coefficients: II. Biometrika 48, 29–40 (1961)

    MathSciNet  MATH  Google Scholar 

  16. Garchitorena, A., Ngonghala, C.N., Guegan, J.F., et al.: Economic inequality caused by feedbacks between poverty and the dynamics of a rare tropical disease: the case of Buruli ulcer in sub-Saharan Africa. Proc. R. Soc. B 282, 20151426 (2015)

    Article  Google Scholar 

  17. Garchitorena, A., Ngonghala, C.N., Texier, G., et al.: Environmental transmission of Mycobacterium ulcerans drives dynamics of Buruli ulcer in endemic regions of Cameroon. Sci. Rep. 5, 18055 (2015)

    Article  Google Scholar 

  18. Ghana Health Service: https://www.ghanahealthservice.org/

  19. Janssens, P.G., Quertinmont, M.J., Sieniawski, J., et al.: Necrotic tropical ulcers and Mycobacterial causative agents. Trop. Geogr. Med. 11, 293–312 (1959)

    Google Scholar 

  20. Kelly Jr, M.R., Tien, J.H., Eisenberg, M.C., et al.: The impact of spatial arrangements on epidemic disease dynamics and intervention strategies. J. Biol. Dyn. 10, 222–249 (2016)

    Article  MathSciNet  Google Scholar 

  21. Kenu, E., Nyarko, K.M., Seefeld, L., et al.: Risk factors for Buruli ulcer in Ghana–a case control study in the Suhum-Kraboa-Coaltar and Akuapem South Districts of the eastern region. PLoS Negl. Trop. Dis. 8(11), e3279 (2014)

    Article  Google Scholar 

  22. LaSalle, J.P.: The Stability of Dynamical Systems, vol. 25. SIAM, Philadelphia (1976)

    Book  MATH  Google Scholar 

  23. MacCallum, P., Tolhurst, J.C.: A new Mycobacterial infection in man. J. Pathol. Bacteriol. 60, 93–122 (1948)

    Article  Google Scholar 

  24. Macklin, J.T.: An investigation of the properties of double radio sources using the Spearman partial rank correlation coefficient. Mon. Not. R. Astron. Soc. 199, 1119–1136 (1982)

    Article  Google Scholar 

  25. Marino, S., Hogue, I.B., Ray, C.J., et al.: A methodology for performing global uncertainty and sensitivity analysis in systems biology. J. Theor. Biol. 254, 178–196 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Marion, E., Eyangoh, S., Yeramian, E., et al.: Seasonal and regional dynamics of M. ulcerans transmission in environmental context: deciphering the role of water bugs as hosts and vectors. PLoS Negl. Trop. Dis. 4, e731 (2010)

    Article  Google Scholar 

  27. Marsollier, L., Robert, R., Aubry, J., et al.: Aquatic insects as a vector for Mycobacterium ulcerans. Appl. Environ. Microbiol. 68(9), 4623–4628 (2002)

    Article  Google Scholar 

  28. Martcheva, M., Lenhart, S., Eda, S., et al.: An immuno-epidemiological model for Johne’s disease in cattle. Vet. Res. 46, 69 (2015)

    Article  Google Scholar 

  29. McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21, 239–245 (1979)

    MathSciNet  MATH  Google Scholar 

  30. Merritt, R.W., Walker, E.D., Small, P.L., et al.: Ecology and transmission of Buruli ulcer disease: a systematic review. PLoS Negl. Trop. Dis. 4, e911 (2016)

    Article  Google Scholar 

  31. Miller Neilan, R.L., Schaefer, E., Gaff, H., et al.: Modeling optimal intervention strategies for cholera. Bull. Math. Biol. 72, 2004–2018 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Morris, A., Gozlan, R.E., Hassani, H., et al.: Complex temporal climate signals drive the emergence of human water-borne disease. Emerg. Microbes Infect. 3, e56 (2014)

    Article  Google Scholar 

  33. Morris, A., Guégan, J.F., Benbow, M.E., et al.: Functional diversity as a new framework for understanding the ecology of an emerging generalist pathogen. EcoHealth 13, 570–581 (2016)

    Article  Google Scholar 

  34. Nyabadza, F., Bonyah, E.: On the transmission dynamics of Buruli ulcer in Ghana: insights through a mathematical model. BMC Res. Notes 8, 656 (2015)

    Article  Google Scholar 

  35. Pascual, M., Bouma, M.J., Dobson, A.P.: Cholera and climate: revisiting the quantitative evidence. Microbes Infect. 4, 237–245 (2002)

    Article  Google Scholar 

  36. Portaels, F., Elsen, P., Guimaraes-Peres, A., et al.: Insects in the transmission of Mycobacterium ulcerans infection. Lancet 353, 986 (1999)

    Article  Google Scholar 

  37. Röltgen, K., Pluschke, G.: Epidemiology and disease burden of Buruli ulcer: a review. Res. Rep. Trop. Med. 6, 59–73 (2016)

    Google Scholar 

  38. Shuai, Z., van den Driessche, P.: Global stability of infectious disease models using Lyapunov functions. SIAM J. Appl. Math. 73, 1513–1532 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Siewe, N., Yakubu, A.A., Satoskar, A.R., et al.: Immune response to infection by Leishmania: a mathematical model. Math. Biosci. 276, 28–43 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. Sopoh, G.E., Johnson, R.C., Chauty, A., et al.: Buruli ulcer surveillance, Benin, 2003–2005. Emerg. Infect. Dis. 9, 1374–1376 (2007)

    Article  Google Scholar 

  41. The World Bank: Ghana data. Technical report, The World Bank (2016). Retrieved from http://data.worldbank.org/country/ghana

  42. Thomas, C.D., Cameron, A., Green, R.E., et al.: Extinction risk from climate change. Nature 427, 145–148 (2004)

    Article  Google Scholar 

  43. Tien, J.H., Earn, D.J.: Multiple transmission pathways and disease dynamics in a waterborne pathogen model. Bull. Math. Biol. 72, 1506–1533 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  44. van den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29–48 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  45. van den Driessche, P., Watmough, J.: Mathematical Epidemiology: Further Notes on the Basic Reproduction Number. Springer, Berlin (2008)

    MATH  Google Scholar 

  46. van Ravensway, J., Benbow, M.E., Tsonis, A.A., et al.: Climate and landscape factors associated with Buruli ulcer incidence in Victoria, Australia. PLoS One 7, e51074 (2012)

    Article  Google Scholar 

  47. Wansbrough-Jones, M., Phillips, R.: Buruli ulcer: emerging from obscurity. Lancet 367(9525), 1849–1858 (2006)

    Article  Google Scholar 

  48. Williamson, H.R., Benbow, M.E., Nguyen, K.D., et al.: Distribution of Mycobacterium ulcerans in Buruli ulcer endemic and non-endemic aquatic sites in Ghana. PLoS Negl. Trop. Dis. 2 (2008)

    Article  Google Scholar 

  49. Williamson, H.R., Benbow, M.E., Campbell, L.P., et al.: Detection of Mycobacterium ulcerans in the environment predicts prevalence of Buruli ulcer in Benin. PLoS Negl. Trop. Dis. 6, e1506 (2012)

    Article  Google Scholar 

  50. Williamson, H., Mosi, L., Donnell, R., et al.: Mycobacterium ulcerans fails to infect through skin abrasions in a guinea pig infection model: implications for transmission. PLoS Negl. Trop. Dis. 8, e2770 (2014)

    Article  Google Scholar 

  51. World Health Organization (WHO): Weekly epidemiological record. Technical report, World Health Organization (2002). http://www.who.int/wer/2002/en/wer7732.pdf

  52. World Health Organization (WHO): Buruli ulcer (Mycobacterium ulcerans infection), Fact sheet. Technical report, World Health Organization (2016). http://www.who.int/mediacentre/factsheets/fs199/en/

  53. Worldometers: Population (2016). Retrieved from http://www.worldometers.info/world-population/ghana-population/

Download references

Acknowledgements

The authors acknowledge partial support from the National Science Foundation (NSF) under Grant No. 1343651 through the Southern Africa Mathematical Sciences Association (SAMSA) Masamu Program—a program that aims to enhance research in the mathematical sciences by serving as a platform for US–Africa research collaborations. This work was also partially supported by the National Institute for Mathematical and Biological Synthesis (NIMBioS)—one of the several Mathematical Sciences Institutes sponsored by the NSF Division of Mathematical Sciences—through NSF Award DBI-1300426, with additional support from The University of Tennessee, Knoxville. The authors appreciate the support for travel expenses from the Society of Mathematical Biology. They acknowledge an invaluable conversation with Pam Small and Heather Williamson about transmission mechanisms.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzanne Lenhart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Edholm, C. et al. (2019). A Risk-Structured Mathematical Model of Buruli Ulcer Disease in Ghana. In: Kaper, H., Roberts, F. (eds) Mathematics of Planet Earth. Mathematics of Planet Earth, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-030-22044-0_5

Download citation

Publish with us

Policies and ethics