Skip to main content

Mathematics of the Not-So-Solid Solid Earth

  • Chapter
  • First Online:
Mathematics of Planet Earth

Part of the book series: Mathematics of Planet Earth ((MPE,volume 5))

  • 1015 Accesses

Abstract

As a result of climatic variations over the past 700,000 years, large ice sheets in high-latitude regions of the Earth formed and subsequently melted, loading and unloading the surface of the Earth. This chapter introduces the mathematical analysis of the vertical motion of the solid Earth in response to this time-varying surface loading. This chapter focuses on two conceptual models: the first, proposed by Haskell [Physics, 6, 265–269 (1935)], describes the return to equilibrium of a viscous half-space after the removal of an applied surface load; the second, proposed by Farrell and Clark [Geophys. J. Royal Astr. Soc., 46, 647–667 (1976)], illustrates the changes in sea level that occur when ice and water are rearranged on the surface of the Earth. The sea level equation proposed by Farrell and Clark accounts for the fact that sea level represents the interface between two dynamic surfaces: the sea surface and the solid Earth, both of which are changing with time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Backus, G.E.: Converting vector and tensor equations to scalar equations in spherical coordinates. Geophys. J. 13, 71–79 (1967)

    Article  MATH  Google Scholar 

  2. Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (1967)

    MATH  Google Scholar 

  3. Bean, W.B.: Nail growth. Thirty-five years of observation. Arch. Intern. Med. 140, 73–76 (1980)

    Google Scholar 

  4. Braun, J.: The many surface expressions of mantle dynamics. Nature Geosc. 3, 825–833 (2010)

    Article  Google Scholar 

  5. Cathles, L.M.: The Viscosity of the Earth’s Mantle. Princeton Univ. Press, Princeton (1975)

    Google Scholar 

  6. Cazenave, A., Nerem, R.S.: Present-day sea level change: observations and causes. Rev. Geophys. 42(RG3001) (2004)

    Google Scholar 

  7. Ekman, M.: The world’s longest continued series of sea-level observations. Pure Appl. Geophys. 127, 73–77 (1988)

    Article  Google Scholar 

  8. England, P.C., Houseman, G.A.: Finite strain calculations of continental deformation II. Comparison with the India-Asia collision zone. J. Geophys. Res. 91, 3664–3676 (1986)

    Google Scholar 

  9. Farrell, W.E., Clark, J.A.: On postglacial sea level. Geophys. J. R. Astron. Soc. 46(3), 647–667 (1976)

    Article  Google Scholar 

  10. Forte, A.M., Peltier, W.R., Dziewoński, A.M.: Inferences of mantle viscosity from tectonic plate velocities. Geophys. Res. Lett. 18, 1747–1750 (1991)

    Article  Google Scholar 

  11. Haskell, N.A.: The motion of a viscous fluid under a surface load. Physics 6, 265–269 (1935)

    Article  MATH  Google Scholar 

  12. Haskell, N.A.: The motion of a viscous fluid under a surface load, part 2. Physics 7, 56–61 (1936)

    Article  MATH  Google Scholar 

  13. Johansson, J.M., Davis, J.L., Scherneck, H.G., et al.: Continuous GPS measurements of postglacial adjustment in fennoscandia – 1. Geodetic results. J. Geophys. Res. 107, 2157 (2002)

    Article  Google Scholar 

  14. Johnson, A.M., Fletcher, R.C.: Folding of Viscous Layers. Columbia University Press, New York (1994)

    Google Scholar 

  15. King, S.D.: Archean cratons and mantle dynamics. Earth Planet. Sci. Lett. 234, 1–14 (2005)

    Article  Google Scholar 

  16. King, S.D.: Reconciling laboratory and observational models of mantle rheology in geodynamic modeling. J. Geodyn. 100, 33–50 (2016)

    Article  Google Scholar 

  17. King, S.D., Anderson, D.L.: Edge driven convection. Earth Planet. Sci. Lett. 160, 289–296 (1998)

    Article  Google Scholar 

  18. Lambeck, K., Yokoyama, Y., Johnston, P., et al.: Global ice volumes at the Last Glacial Maximum and early lateglacial. Earth Planet. Sci. Lett. 181, 513–527 (2000)

    Article  Google Scholar 

  19. Landerer, F.W., Swenson, S.C.: Accuracy of scaled GRACE terrestrial water storage estimates. Water Resource Res. 48(W04531) (2012). https://doi.org/10.1029/2011WR011453

  20. Love, A.E.H.: The stress produced in a semi-infinite solid by pressure on part of the boundary. Phil. Tran. Roy. Soc. London, Ser. A 228, 377–379 (1929)

    Google Scholar 

  21. Mazzotti, S., Lambert, A., Henton, J., et al.: Absolute gravity calibration of GPS velocities and glacial isostatic adjustment in mid-continent North America. Geophys. Res. Lett. 38, L24311 (2011). https://doi.org/10.1029/2011GL049846

    Article  Google Scholar 

  22. Milne, G.A., Davis, J.L., Mitrovica, J.X., et al.: Space-geodetic constraints on glacial isostatic adjustment inFennoscandia. Science 291, 2381–2385 (2001)

    Article  Google Scholar 

  23. Milne, G.A., Mitrovica, J.X., Scherneck, H.G.: Estimating past continental ice volume from sea-level data. Quat. Sci. Rev. 21, 361–376 (2002)

    Article  Google Scholar 

  24. Mitrovica, J.X., Milne, G.A.: On post-glacial sea level: I. general theory. Geophys. J. Int. 154, 253–267 (2003)

    Google Scholar 

  25. Mitrovica, J.X., Tamisiea, M.E., Davis, J.L., et al.: Recent mass balance of polar ice sheets inferred from patterns of global sea-level change. Nature 409, 1026–1029 (2001)

    Article  Google Scholar 

  26. Morgan, W.J.: Rises, trenches, great faults, and crustal blocks. J. Geophys. Res. 73, 1959–1982 (1968)

    Article  Google Scholar 

  27. Nocquet, J.M., Calais, E., Parsons, B.: Geodetic constraints on glacial isostatic adjustment in Europe. Geophys. Res. Lett. 32, L06308 (2005)

    Article  Google Scholar 

  28. Nygård, A., Sejrup, H.P., Haflidason, H., et al.: The glacial North Sea fan, southern Norwegian Margin: architecture and evolution from the upper continental slope to the deep-sea basin. Mar. Pet. Geol. 22, 71–84 (2005)

    Article  Google Scholar 

  29. Olver, F.W.J., Olde Daalhuis, A.B., Lozier, D.W., et al. (eds.): NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/. Release 1.0.19 of 2018-06-22

  30. Park, K.D., Nerem, R.S., Davis, J.L., et al.: Investigation of glacial isostatic adjustment in the northeast US using GPS measurements. Geophys. Res. Lett. 29, 1509–1512 (2002)

    Article  Google Scholar 

  31. Parsons, B., Sclater, J.G.: An analysis of the variation of ocean floor bathymetry and heat flow with age. J. Geophys. Res. 82, 803–827 (1977)

    Article  Google Scholar 

  32. Paulson, A., Zhong, S., Wahr, J.: Modelling post-glacial rebound with lateral viscosity variations. Geophys. J. Int. 163, 357–371 (2005)

    Article  Google Scholar 

  33. Peltier, W.: Impulse response of a Maxwell Earth. Rev. Geophys. 12, 649–669 (1974)

    Article  Google Scholar 

  34. Peltier, W.R., Argus, D.F., Drummond, R.: Space geodesy constrains ice-age terminal deglaciation: The global ICE-6G_C (VM5a) model. J. Geophys. Res. 120, 450–487 (2015)

    Article  Google Scholar 

  35. Peltier, W.R., Tushingham, A.M.: Influence of glacial isostatic-adjustment on tide-gauge measurements of secular sea-level change. J. Geophys. Res. 96, 6779–67,960 (1991)

    Article  Google Scholar 

  36. Ramillien, G., Bouhours, S., Lombard, A., et al.: Land water storage contribution to sea level from GRACE geoid data over 2003–2006. Global Planet. Change 60, 381–392 (2008)

    Article  Google Scholar 

  37. Schubert, G., Turcotte, D.L., Olson, P.: Mantle Convection in the Earth and Planets. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  38. Sella, G.F., Dixon, T.H., Mao, A.: REVEL: A model for recent plate velocities from space geodesy. J. Geophys. Res. 107(B4), ETG 11-1–ETG 11-30 (2002). https://doi.org/10.1029/2000JB000033

    Article  Google Scholar 

  39. Sella, G.F., Stein, S., Dixon, T.H., et al.: Observation of glacial isostatic adjustment in “stable” North America with GPS. Geophys. Res. Lett. 34, L02306 (2007). https://doi.org/10.1029/2006GL027081

    Article  Google Scholar 

  40. Spada, G., Antonioli, A., Cianetti, S., et al.: Glacial isostatic adjustment and relative sea-level changes: the role of lithospheric and upper mantle heterogeneities in a 3-d spherical earth. Geophys. J. Int. 165, 692–702 (2006)

    Article  Google Scholar 

  41. Tamisiea, M.E., Mitrovica, J.X., Milne, G.A., et al.: Global geoid and sea level changes due to present-day ice mass fluctuations. J. Geophys. Res. 106, 30,849–30,863 (2001)

    Google Scholar 

  42. Tamisiea, M.E., Mitrovica, J.X., Davis, J.L.: GRACE gravity data constrain ancient ice geometries and continental dynamics over Laurentia. Science 5826, 881–883 (2007)

    Article  Google Scholar 

  43. van Veen, J.: Bestaat er een geologische bodemdaling te Amsterdam sedert 1700? Tijdschrift Koninklijk Nederlandsch Aardrijkskundig Genootschap 2: LXII (1945)

    Google Scholar 

  44. Wang, H., Wu, P.: Effects of lateral variations in lithospheric thickness and mantle viscosity on glacially-induced surface motion on a spherical, self-gravitating Maxwell Earth. Earth Planet. Sci. Lett. 244, 576–589 (2006)

    Article  Google Scholar 

  45. Wilson, J.T.: Did the Atlantic close and then reopen? Nature 211, 676–681 (1966)

    Article  Google Scholar 

  46. Wu, P.: Mode coupling in a viscoelastic self-gravitating spherical earth induced by axisymmetric loads and lateral viscosity variations. Earth Planet. Sci. Lett. 197, 1–10 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

The author acknowledges support from NSF Grant EAR-1250988.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott D. King .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

King, S.D. (2019). Mathematics of the Not-So-Solid Solid Earth. In: Kaper, H., Roberts, F. (eds) Mathematics of Planet Earth. Mathematics of Planet Earth, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-030-22044-0_2

Download citation

Publish with us

Policies and ethics