Skip to main content

Modeling Food Systems

  • Chapter
  • First Online:
Mathematics of Planet Earth

Part of the book series: Mathematics of Planet Earth ((MPE,volume 5))

Abstract

When enough food is produced but sizable fractions of the population suffer from malnutrition or are overweight, it is time to get a better understanding of the global food system. This chapter introduces food systems and food security as timely research topics for Mathematics of Planet Earth (MPE).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allen, M.: Planetary boundaries: tangible targets are critical. Nat. Rep. Clim. Chang. 3(10), 114–115 (2009). https://doi.org/10.1038/climate.2009.95

    Article  Google Scholar 

  2. Bass, S.: Planetary boundaries: keep off the grass. Nat. Rep. Clim. Chang. 113–114 (2009). https://doi.org/10.1038/climate.2009.94

    Article  Google Scholar 

  3. Beddington, J., Asaduzzaman, M., Fernandez, A., et al.: Achieving food security in the face of climate change: summary for policy makers from the commission on sustainable agriculture and climate change. Technical report, CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Copenhagen (2011). https://cgspace.cgiar.org/bitstream/handle/10568/10701/Climate_food_commission-SPMNov2011.pdf?sequence=6

  4. Bokhiria, J.B., Fowler, K.R., Jenkins, E.W.: Modeling and optimization for crop portfolio management under limited irrigation strategies. J. Agric. Environ. Sci. 3, 209–237 (2014)

    Google Scholar 

  5. Boyer, P., Butault, J.: The food Euro: what food expenses pay for? Letter of the Observatory on formation of prices and margins of food products. FranceAgriMer 1, 6 (2013)

    Google Scholar 

  6. Brewer, P.: Planetary boundaries: consider all consequences. Nat. Rep. Clim. Chang., 117–118 (2009). https://doi.org/10.1038/climate.2009.98

    Article  Google Scholar 

  7. Canning, P., Rehkamp, S., Waters, A., Etemadnia, H.: The role of fossil fuels in the U.S. food system and the American diet. Technical Report. ERR-224, Department of Agriculture, Economic Research Service, Washington, DC (2017)

    Google Scholar 

  8. Canning, P., Weersink, A., Kelly, J.: Farm share of the food dollar: an IO approach for the United States and Canada. Agric. Econ. 47, 505–512 (2016)

    Article  Google Scholar 

  9. Carroll, I.T., Bansal, S.: Livestock market data for modeling disease spread among US cattle. bioRxiv Preprint (2015). http://dx.doi.org/10.1101/021980

  10. Clark, C., Conrad, J.: Natural Resource Economics: Notes and Problems. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  11. Costanza, R.: Ecological Economics: The Science and Management of Sustainability. Columbia University Press, New York (1992)

    Google Scholar 

  12. Dixon, P.B., Parmenter, B.R.: Computable general equilibrium modelling for policy analysis and forecasting. Handb. Comput. Econ. 1, 3–85 (1996)

    Article  MathSciNet  Google Scholar 

  13. European Environmental Agency (EEA): Agriculture. https://www.eea.europa.eu/themes/agriculture

  14. Fair, K.R., Bauch, C.T., Anand, M.: Dynamics of the global wheat trade network and resilience to shocks. Nat. Sci. Rep. 7, 7177 (2017). https://doi.org/10.1038/s41598-017-07202-y

    Article  Google Scholar 

  15. Feeding America: Hunger in America. http://www.feedingamerica.org/research/

  16. Food and Agriculture Organization (FAO): Food and Agriculture Data. http://www.fao.org/faostat/en/

  17. Food and Agriculture Organization (FAO): Information Systems for Food Security and Nutrition. http://www.fao.org/3/a-au836e.pdf

  18. Food and Agriculture Organization (FAO): The state of food insecurity in the world 2014: strengthening the enabling environment for food security and nutrition. United Nations (2015)

    Google Scholar 

  19. GAMS Software GmbH.: General Algebraic Modeling System (GAMS), Frechen (2017). URL https://www.gams.com/docs/intro.htm

  20. Gapminder: Gapminder. https://www.gapminder.org/

  21. Garver, J., Goldberg, M.S.: Boundaries and Indicators: Conceptualizing and Measuring Progress Toward an Economy of Right Relationship Constrained by Global Economic Limits, chap. 5, pp. 149–190. Columbia University Press, New York (2015). https://doi.org/10.1038/climate.2009.93

    Article  Google Scholar 

  22. Gillig, D., McCarl, B.A.: Introduction to Computable General Equilibrium Model (CGE): Course notes. Technical report, Department of Agricultural Economics, Texas A&M University (2002)

    Google Scholar 

  23. Golan, A., Judge, G., Robinson, S.: Recovering information from incomplete or partial multisectoral economic data. Rev. Econ. Stat. LXXVI(3), 541–549 (1994)

    Article  Google Scholar 

  24. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, third printing, revised and corrected edn. Springer, New York (1990)

    Google Scholar 

  25. Guckenheimer, J., Ottino, J.M.: Foundations for complex systems research in the physical sciences and engineering. Technical report, U.S. National Science Foundation, Alexandria (2008)

    Google Scholar 

  26. Harrison, W.J., Pearson, K.R.: Computing solutions for large general equilibrium models using GEMPACK. Comput. Econ. 9(2), 83–127 (1996)

    Article  Google Scholar 

  27. Hertel, T.W., Hertel, T.W.: Global Trade Analysis: Modeling and Applications. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  28. International Food Policy Research Institute (IFPRI): Agricultural S&T Indicators. http://library.ifpri.info/open-data/

  29. Isard, W.: Gravity and Spatial Interaction Models, pp. 243–280. Routledge, New York (2017)

    Chapter  Google Scholar 

  30. Johns Hopkins University, Center for a Livable Future: Food policy networks. http://www.foodpolicynetworks.org/

  31. Kalnay, E.: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  32. Krugman, P.: Increasing returns and economic geography. J. Polit. Econ. 99(3), 483–499 (1991)

    Article  Google Scholar 

  33. Malthus, T.R.: An essay on the principle of population. Reprint 2004. Edited with an introduction and notes by Geoffrey Gilbert (1798)

    Google Scholar 

  34. Meiss, J.D.: Differential Dynamical Systems, second, revised edn. MM22. SIAM, Philadelphia (2017)

    Google Scholar 

  35. Melitz, M.: The impact of trade on intra-industry reallocations and aggregate industry productivity. Econometrica 71(6), 1695–1725 (2003)

    Article  MathSciNet  Google Scholar 

  36. Miller, R.E., Blair, P.D.: Input-Output Analysis: Foundations and Extensions, 2nd edn. Cambridge University Press, New York (2009)

    Book  Google Scholar 

  37. Miller, B.W., Breckheimer, I., McCleary, A.L., Guzmn-Ramirez, L., Caplow, S.C., Jones-Smith, J.C., Walsh, S.J.: Using stylized agent-based models for population-environment research: a case study from the Galápagos Islands. Popul. Environ. 31, 401–426 (2010)

    Article  Google Scholar 

  38. Molden, D.: Planetary boundaries: the devil is in the detail. Nat. Rep. Clim. Chang., 116–117 (2009). https://doi.org/10.1038/climate.2009.97

    Article  Google Scholar 

  39. Molina, M.J.: Planetary boundaries: identifying abrupt change. Nat. Rep. Clim. Chang., 115–116 (2009). https://doi.org/10.1038/climate.2009.96

    Article  Google Scholar 

  40. Montgomery County, MD: Montgomery County FoodStat Application. https://countystat.maps.arcgis.com/apps/webappviewer/index.html?id=099052a140cd4bb38e99cbeb870ebce0

  41. Myers, S.S., Zanobetti, A., Kloog, I., et al.: Rising CO2 threatens human nutrition. Nature 510(7503), 139 (2014)

    Article  Google Scholar 

  42. Newman, M.: The structure and function of complex networks. SIAM Rev. 45, 167–255 (2003)

    Article  MathSciNet  Google Scholar 

  43. Ng, M., Fleming, T., Robinson, M., et al.: Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the global burden of disease study 2013. Lancet 384(9945), 766–781 (2014)

    Article  Google Scholar 

  44. Raworth, K.: A safe and just space for humanity: can we live within the doughnut. Oxfam Policy Prac. Clim. Chang. Res. 8(1), 1–26 (2012)

    Google Scholar 

  45. Raworth, K.: Why it’s time for ‘Doughnut Economics’ (2014). https://www.youtube.com/watch?v=1BHOflzxPjI. TEDxAthens

  46. Raworth, K.: Doughnut Economics: Seven Ways to Think Like a 21st-Century Economist. Chelsea Green Publishing, White River Junction (2017)

    Google Scholar 

  47. Reggiani, A.: Network resilience for transport security: some methodological considerations. Transp. Policy 28, 63–68 (2013)

    Article  Google Scholar 

  48. Rehkamp, S., Canning, P.: Measuring embodied blue water in American diets: An EIO supply chain approach. Ecol. Econ. 147, 179–188 (2018)

    Article  Google Scholar 

  49. Rockström, J., Steffen, W., Noone, K., et al.: A safe operating space for humanity. Nature 461(7263), 472–475 (2009)

    Article  Google Scholar 

  50. Samper, C.: Planetary boundaries: rethinking biodiversity. Nat. Rep. Clim. Chang. 118–119 (2009). https://doi.org/10.1038/climate.2009.98

    Article  Google Scholar 

  51. Schlesinger, W.H.: Planetary boundaries: thresholds risk prolonged degradation. Nat. Rep. Clim. Chang. 112–113 (2009). https://doi.org/10.1038/climate.2009.93

    Article  Google Scholar 

  52. Smith, V.L.: Relevance of laboratory experiments to testing resource allocation theory. In: Evaluation of Econometric Models, pp. 345–377. Elsevier, Amsterdam (1980)

    Chapter  Google Scholar 

  53. Sraffa, P., with the collaboration of Maurice H. Dobb (eds.): The Works and Correspondence of David Ricardo, vol. I. Cambridge University Press, Cambridge (1951)

    Google Scholar 

  54. Steffen, W., Broadgate, W., Deutsch, L., et al.: The trajectory of the Anthropocene: the great acceleration. Anthropocene Rev. 2(1), 81–98 (2015)

    Article  Google Scholar 

  55. Steffen, W., Richardson, K., Rockström, J., et al.: Planetary boundaries: guiding human development on a changing planet. Science 347(6223), 1259855 (2015)

    Article  Google Scholar 

  56. Tisue, S., Wilensky, U.: NetLogo: A simple environment for modeling complexity. Technical report, Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston (2004). https://ccl.northwestern.edu/netlogo/

  57. Tufte, E.: The Visual Display of Quantitative Information, 213 pp. Graphic Press, Cheshire (1973/2001)

    Google Scholar 

  58. UK Government, Department for Environment, Food and Rural Affairs (DEFRA): Food Statistics Pocketbook (2017). https://www.gov.uk/government/statistics/food-statistics-pocketbook-2017

  59. United Nations: The Sustainable Development Goals Report, 2017. Technical report, United Nations, New York (2017). https://unstats.un.org/sdgs/files/report/2017/TheSustainableDevelopmentGoalsReport2017.pdf

  60. United Nations, The European Commission, The Food and Agriculture Organization of the United Nations, The Organisation for Economic Co-operation and Development, The International Monetary Fund, The World Bank Group: System of Environmental–Economic Accounting 2012—Central Framework. United Nations, New York (2014). https://unstats.un.org/unsd/envaccounting/seearev/seea_cf_final_en.pdf

    Google Scholar 

  61. US Department of Agriculture (USDA): Data. https://www.usda.gov/topics/data

  62. US National Academy of Sciences: A framework for assessing effects of the food system. Technical report, IOM (Institute of Medicine) and NRC (National Research Council), Washington, DC (2015)

    Google Scholar 

  63. von Thünen, J.H.: The Isolated State. Perthes, Hamburg (1826). English translation. Pergamon, Oxford (1966)

    Google Scholar 

  64. Wiedmann, T.O., Schandl, H., Lenzen, M., et al.: The material footprint of nations. Proc. Natl. Acad. Sci. 112(20), 6271–6276 (2015)

    Article  Google Scholar 

  65. Wikipedia: System dynamics. https://en.wikipedia.org/wiki/System_dynamics

  66. World Bank: World Bank Open Data. http://data.worldbank.org

Download references

Acknowledgements

Much of the work presented in this chapter was inspired by discussions at the weekly seminars of the SAMSI Working Group on Food Systems during the academic year 2017–2018. The authors thank professor Mary Lou Zeeman (Bowdoin College), who planted the seeds of our interest in food systems and contributed to an earlier draft of the chapter. The authors also thank the anonymous referees of this and an earlier version of the chapter for insightful comments and encouraging remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans G. Kaper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaper, H.G., Engler, H. (2019). Modeling Food Systems. In: Kaper, H., Roberts, F. (eds) Mathematics of Planet Earth. Mathematics of Planet Earth, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-030-22044-0_10

Download citation

Publish with us

Policies and ethics