Skip to main content

Towards New Production Technologies: 3D Printing of Scintillators

  • Conference paper
  • First Online:
Engineering of Scintillation Materials and Radiation Technologies (ISMART 2018)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 227))

Abstract

This critical review aims to note advances in 3D printing for the scintillation community. A few main 3D printing techniques were reviewed and compared. Technical limitations and practical challenges are emphasized, and design considerations are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note classical casting (moldings) is not AM technique, because use some special tools and patterns, which is unique to each part.

  2. 2.

    Conceptually, the ideal 3D printer is a “black box” with a single “print” button on the case. One loads a raw material into this machine, push the button, waits some time and get the desired part. No additional devices or tools are needed. In real life, indeed, the situation is slightly more complicated.

  3. 3.

    The yellow color of garnet doped ceria powders does not hinder printing by SLA method [9].

References

  1. A. Ambrosi, M. Pumera, 3D-printing technologies for electrochemical applications. Chem. Soc. Rev. 45, 2740–2755 (2016)

    Article  Google Scholar 

  2. S.S. Zalesskiy, N.S. Shlapakova, V.P. Ananikov, Visible light mediated metal-free thiolyne click reaction. Chem. Sci. 7, 6740–6745 (2016)

    Article  Google Scholar 

  3. https://www.michelin.com/eng/media-room/press-and-news/michelin-news/Innovation/Metal-3D-printing-revolutionizing-industrial-processes

  4. https://www.michelin.com/fre/presse/Presse-et-actualites/actualite-michelin/Innovation/Pneu-concept-notre-vision-de-l-avenir

  5. R.B. Osman, A.J. van der Veen, D. Huiberts, D. Wismeijer, N. Alharbi, 3D-printing zirconia implants; a dream or a reality? An in-vitro study evaluating the dimensional accuracy, surface topography and mechanical properties of printed zirconia implant and discs. J. Mech. Behav. Biomed. Mater. 75, 521–528 (2017)

    Article  Google Scholar 

  6. Z. Yang, J. Hu, K. Li, A. Liu, S. Liu, 3D printing of diamond tools for dental ceramics processing. Adv. Eng. Mater. 20, 1700747 (2018)

    Article  Google Scholar 

  7. R.K. Enneti, K.C. Prough, T.A. Wolfe, A. Klein, N. Studley, J.L. Trasorras, Sintering of WC-12%Co processed by binder jet 3D printing (BJ3DP) technology. Int. J. Refract Metal Hard Mater. 71, 28–35 (2018)

    Article  Google Scholar 

  8. J. Son, D.G. Kim, S. Lee, J. Park, Y. Kim, T. Schaarschmidt, Y.K. Kim, Improved 3D printing plastic scintillator fabrication. J. Korean Phys. Soc. 73, 887–892 (2018)

    Article  ADS  Google Scholar 

  9. G.A. Dosovitskiy, P.V. Karpyuk, P.V. Evdokimov, D.E. Kuznetsova, V.A. Mechinsky, A.E. Borisevich, A.A. Fedorov, V.I. Putlayev, A.E. Dosovitskiy, M.V. Korjik, First 3D-printed complex inorganic polycrystalline scintillator. Cryst. Eng. Comm. 19, 4260–4264 (2017)

    Article  Google Scholar 

  10. H. Kodama, A scheme for three-dimensional display by automatic fabrication of three-dimensional model. IEICE Trans. Electron. J64–C, 237–241 (1981). (Japanese Edition)

    Google Scholar 

  11. H. Kodama, Automatic method for fabricating a three-dimensional plastic model with photo-hardening polymer. Rev. Sci. Instrum. 52, 1770–1773 (1981)

    Article  ADS  Google Scholar 

  12. https://www.autodesk.com/redshift/history-of-3d-printing/

  13. https://patents.google.com/patent/US4575330

  14. https://patents.google.com/patent/US4938816

  15. https://patents.google.com/patent/US4944817

  16. https://patents.google.com/patent/US4863538

  17. https://patents.google.com/patent/US5121329

  18. https://www.kickstarter.com/projects/formlabs/form-1-an-affordable-professional-3d-printer

  19. https://www.kickstarter.com/projects/94280526/milkshake3d-the-artists-3d-printerfrom-jewel-to-11

  20. https://www.kickstarter.com/projects/tiko3d/tiko-the-unibody-3d-printer/

  21. https://www.kickstarter.com/projects/m3d/the-micro-the-first-truly-consumer-3d-printer

  22. https://www.kickstarter.com/projects/1885710086/porcelite-ceramic-resin-for-sla-dlp-3d-printing

  23. M. Molitch-Hou, Additive Manufacturing: Materials, Processes, Quantifications and Applications, Ed. by J. Zhang, Y.-G. Jung (2018) 352p

    Google Scholar 

  24. https://www.astm.org/industry/additive-manufacturing-overview.html

  25. V. Promakhov, A. Zhukov, Y. Dubkova, I. Zhukov, S. Kovalchuk, T. Zhukova, A. Olisov, V. Klimenko, N. Savkina, Structure and properties of ZrO2–20%Al2O3 ceramic composites obtained using additive technologies. Materials 11, 2361 (2018)

    Article  ADS  Google Scholar 

  26. B. Khatri, K. Lappe, M. Habedank, T. Mueller, C. Megnin, T. Hanemann, Fused deposition modeling of ABS-barium titanate composites: a simple route towards tailored dielectric devices. Polymers 10, 666 (2018)

    Article  Google Scholar 

  27. M.A. Gibson, N.M. Mykulowycz, J. Shim, R. Fontana, P. Schmitt, A. Roberts, J. Ketkaew, L. Shao, W. Chen, P. Bordeenithikasem, J.S. Myerberg, R. Fulop, M.D. Verminski, E.M. Sachs, Y. Chiang, C.A. Schuh, A.J. Hart, J. Schroers, 3D printing metals like thermoplastics: fused filament fabrication of metallic glasses. Mater. Today 21, 697–702 (2018)

    Article  Google Scholar 

  28. J. Klein, M. Stern, G. Franchin, M. Kayser, C. Inamura, S. Dave, J.C. Weaver, P. Houk, P. Colombo, M. Yang, N. Oxman, Additive manufacturing of optically transparent glass. 3D Printing Addit. Manufact. 2, 92–105 (2018)

    Article  Google Scholar 

  29. https://www.aniwaa.com/best-professional-desktop-sls-3d-printers/

  30. https://all3dp.com/1/benchtop-sls-printer-sls-3d-printing/

  31. U. Scheithauer, E. Schwarzer, T. Moritz, A. Michaelis, Additive manufacturing of ceramic heat exchanger: opportunities and limits of the lithography-based ceramic manufacturing (LCM). J. Mater. Eng. Perform. 27, 14–20 (2018)

    Article  Google Scholar 

  32. P.R. Martinez, A.W. Basit, S. Gaisford, 3D Printing of Pharmaceuticals (2018) 246p

    Google Scholar 

  33. Z.C. Eckel, C. Zhou, J.H. Martin, A.J. Jacobsen, W.B. Carter, T.A. Schaedler, Additive manufacturing of polymer-derived ceramics. Science 351, 58–62 (2016)

    Article  ADS  Google Scholar 

  34. A. Vyatskikh, S. Delalande, A. Kudo, X. Zhang, C.M. Portela, J.R. Greer, Additive manufacturing of 3D nano-architected metals. Nat. Commun. 9, 593 (2018)

    Article  ADS  Google Scholar 

  35. F. Kotz, K. Arnold, W. Bauer, D. Schild, N. Keller, K. Sachsenheimer, T.M. Nargang, C. Richter, D. Helmer, B. Rapp, Three-dimensional printing of transparent fused silica glass. Nature 554, 337–339 (2017)

    Article  ADS  Google Scholar 

  36. I. Cooperstein, E. Shukrun, O. Press, A. Kamyshny, S. Magdassi, Additive manufacturing of transparent silica glass from solutions. ACS Appl. Mater. Interfaces. 10, 18879–18885 (2018)

    Article  Google Scholar 

  37. D.A. Komissarenko, P.S. Sokolov, A.D. Evstigneeva, I.A. Shmeleva, A.E. Dosovitsky, Rheological and curing behavior of acrylate-based suspensions for the DLP 3D printing of complex zirconia parts. Materials 11, 2350 (2018)

    Article  ADS  Google Scholar 

  38. https://www.instructables.com/id/SLADLP-Basics/

  39. https://formlabs.com/blog/3d-printing-technology-comparison-sla-dlp/

Download references

Acknowledgements

We would like to thank Drs. D.A. Komissarenko, P.V. Evdokimov and V.I. Putlyaev for very useful comments. We also wish to acknowledge P.V. Karpyuk and D.E. Kuznetsova for his technical assistance. The work was financially supported by a grant No. 14.W03.31.0004 from Ministry of Science and Education of the Russian Federation. The measurements were performed using equipment of NRC “Kurchatov institute”—IREA shared analytical facilities center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Sokolov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sokolov, P.S., Dosovitskiy, G.A., Dosovitskiy, A.E., Korjik, M.V. (2019). Towards New Production Technologies: 3D Printing of Scintillators. In: Korzhik, M., Gektin, A. (eds) Engineering of Scintillation Materials and Radiation Technologies. ISMART 2018. Springer Proceedings in Physics, vol 227. Springer, Cham. https://doi.org/10.1007/978-3-030-21970-3_8

Download citation

Publish with us

Policies and ethics