Skip to main content

Ceramic Scintillation Materials—Approaches, Challenges and Possibilities

  • Conference paper
  • First Online:
Engineering of Scintillation Materials and Radiation Technologies (ISMART 2018)

Abstract

Various stages of the preparation of polycrystalline materials based on compounds with garnet structure of general composition (Gd,Y)3(Al,Ga)5O12:Ce are considered. Certain patterns and difficulties are noted for each stage of the process. Examples are given from experimental results on obtaining of garnet ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Dujardin, E. Auffray et al., Needs, trends, and advances in inorganic scintillators. IEEE Trans. Nucl. Sci. 65(8), 1977–1997 (2018)

    Article  ADS  Google Scholar 

  2. D.S. McGregor, Materials for gamma-ray spectrometers: inorganic scintillators. Annu. Rev. Mater. Res. (2018)

    Google Scholar 

  3. P. Lecoq, A., Gektin, M. Korzhik, How user’s requirements influence the development of scintillators, in Inorganic Scintillators for Detector Systems (Springer, 2017), pp. 43–101

    Google Scholar 

  4. T. Yanagida, H. Takahashi, T. Ito, D. Kasama, T. Enoto, M. Sato, S. Hirakuri, M. Kokubun, K. Makishima, T. Yanagitani, H. Yagi, Evaluation of properties of YAG (Ce) ceramic scintillators. IEEE Trans. Nucl. Sci. 52(5), 1836–1841 (2005)

    Article  ADS  Google Scholar 

  5. E. Zych, C. Brecher, A.J. Wojtowicz, H. Lingertat, Luminescence properties of Ce-activated YAG optical ceramic scintillator materials. J. Lumin. 75(3), 193–203 (1997)

    Article  Google Scholar 

  6. Saint-Gobain YAG-catalogue. https://www.crystals.saint-gobain.com/products/yag-yttrium-aluminum-garnet

  7. Crytur YAG:Ce-catalogue. https://www.crytur.cz/materials/yagce/

  8. J. Jiang, K. Shimazoe, Y. Nakamura, H., Takahashi, Y. Shikaze, Y. Nishizawa, et al., A prototype of aerial radiation monitoring system using an unmanned helicopter mounting a GAGG scintillator Compton camera. J. Nucl. Sci. Technol. 53(7), 1067–1075 (2016)

    Article  Google Scholar 

  9. H.M. Park, K.S. Joo, Development of a real-time radiation level monitoring sensor for building an underwater radiation monitoring system. J. Sens. Sci. Technol. 24(2), 96–100 (2015)

    Article  MathSciNet  Google Scholar 

  10. S. Yamamoto, H. Nitta, Development of an event-by-event based radiation imaging detector using GGAG: a ceramic scintillator for X-ray CT. NIM A (2018) (in press)

    Google Scholar 

  11. Y. Wu, Z. Luo, H. Jiang, F. Meng, M. Koschan, C.L. Melcher, Single crystal and optical ceramic multicomponent garnet scintillators: a comparative study. NIM A780, 45–50 (2015)

    Article  ADS  Google Scholar 

  12. F.R. Schneider, K. Shimazoe, I. Somlai-Schweiger, S.I. Ziegler, A PET detector prototype based on digital SiPMs and GAGG scintillators. Phys. Med. Biol. 60(4), 1667 (2015)

    Article  Google Scholar 

  13. N.J. Cherepy, Z.M. Seeley, S.A. Payne, P.R. Beck, O.B. Drury, S.P. O’Neal, K.M. Figueroa, S. Hunter, L. Ahle, P.A. Thelin, T. Stefanik, Development of transparent ceramic Ce-doped gadolinium garnet gamma spectrometers. IEEE Trans. Nucl. Sci. 60(3), 2330–2335 (2013)

    Article  ADS  Google Scholar 

  14. N.J. Cherepy, J.D. Kuntz, Z.M. Seeley, S.E. Fisher, O.B. Drury, B.W. Sturm, T.A. Hurst, R.D. Sanner, J.J. Roberts, S.A. Payne, Transparent ceramic scintillators for gamma spectroscopy and radiography, in Hard X-ray, Gamma-ray, and Neutron Detector Physics XII, vol. 7805, 78050I (2010)

    Google Scholar 

  15. A. Giaz, G. Hull, V. Fossati, N. Cherepy, F. Camera, N. Blasi, S. Brambilla, S. Coelli, B. Million, S. Riboldi, Preliminary investigation of scintillator materials properties: SrI2:Eu,CeBr3 and GYGAG:Ce for gamma rays up to 9 MeV. NIM A 804, 212–220 (2015)

    Article  ADS  Google Scholar 

  16. A. Nagura, K. Kamada, M. Nikl, S. Kurosawa, J. Pejchal, Y. Yokota et al., Improvement of scintillation properties on Ce doped Y3Al5O12 scintillator by divalent cations co-doping. Jpn. J. Appl. Phys. 54(4S), 04DH17 (2015)

    Google Scholar 

  17. P. Průša, M. Kučera, V. Babin, P. Brůža, D. Pánek, A. Beitlerová, M. Garnet et al., Scintillators of superior timing characteristics: material, engineering by liquid phase epitaxy. Adv. Opt. Mater. 5(6), 1600875 (2017)

    Google Scholar 

  18. G. Tamulaitis, A. Vaitkevičius, S. Nargelas, R. Augulis, V. Gulbinas, P. Bohacek, M. Nikl, A. Borisevich, A. Fedorov, M. Korjik, E. Auffray, Subpicosecond luminescence rise time in magnesium codoped GAGG:Ce scintillator. Nucl. Instrum. Methods Phys. Res. Sect. A 870, 25–29 (2017)

    Article  ADS  Google Scholar 

  19. T. Yanagida, T. Itoh, H. Takahashi, S. Hirakuri, M. Kokubun, K. Makishima et al., Improvement of ceramic YAG (Ce) scintillators to (YGd) 3Al5O12 (Ce) for gamma-ray detectors. Nucl. Instrum. Methods Phys. Res. Sect. A 579(1), 23–26 (2007)

    Article  ADS  Google Scholar 

  20. C.W. Van Eijk, Inorganic scintillators in medical imaging. Phys. Med. Biol. 47(8), R85 (2002)

    Article  Google Scholar 

  21. T. Kanai, M. Satoh, I. Miura, Hot-pressing method to consolidate Gd3(Al,Ga)5O12:Ce garnet scintillator powder for use in an X-ray CT detector. Int. J. Appl. Ceram. Technol. 10, E1–E10 (2013)

    Article  Google Scholar 

  22. V.V. Nagarkar, T.K. Gupta, S.R. Miller, Y. Klugerman, M.R. Squillante, G. Entine, Structured CsI (Tl) scintillators for X-ray imaging applications. IEEE Trans. Nucl. Sci. 45(3), 492–496 (1998)

    Article  ADS  Google Scholar 

  23. G. Dosovitskiy, A. Fedorov, P. Karpyuk, D. Kuznetsova, A., Mikhlin, D. Kozlov, M. Korjik et al., Polycrystalline scintillators for large area detectors in HEP experiments. J. Instrum. 12(06), C06045 (2017)

    Article  Google Scholar 

  24. V. Lupei, Comparative spectroscopic investigation of rare earth-doped oxide transparent ceramics and single crystals. J. Alloy. Compd. 451(1–2), 52–55 (2008)

    Article  Google Scholar 

  25. T. Yanagida, K. Kamada, Y. Fujimoto, H. Yagi, T. Yanagitani, Comparative study of ceramic and single crystal Ce:GAGG scintillator. Opt. Mater. 35(12), 2480–2485 (2013)

    Article  ADS  Google Scholar 

  26. M.T. Lucchini, K. Pauwels, K. Blazek, S. Ochesanu, E. Auffray, Radiation tolerance of LuAG:Ce and YAG:Ce crystals under high levels of gamma-and proton-irradiation. IEEE Trans. Nucl. Sci. 63(2), 586–590 (2016)

    Article  ADS  Google Scholar 

  27. M. Tyagi, F. Meng, M. Koschan, A.K. Singh, C.L. Melcher, S.C. Gadkari, Effect of Co-doping on the radiation hardness Gd3Ga3Al2O12:Ce scintillators. IEEE Trans. Nucl. Sci. 62(1), 336–339 (2015)

    Article  ADS  Google Scholar 

  28. K. Kamada, T. Yanagida, T. Endo, K. Tsutumi, Y. Usuki, M. Nikl et al., 2 inch diameter single crystal growth and scintillation properties of Ce:Gd3Al2Ga3O12. J. Cryst. Growth 352(1), 88–90 (2012)

    Article  ADS  Google Scholar 

  29. M., Tyagi, V.V. Desai, A.K. Singh, S.G. Singh, S. Sen, B.K. Nayak, S.C. Gadkari, Timing characteristics of Ce doped Gd3Ga3Al2O12 single crystals in comparison with CsI (Tl) scintillators. Physica Status Solidi(a) 212(10), 2213–2218 (2015)

    Google Scholar 

  30. Z.M. Seeley, N.J. Cherepy, S.A. Payne, Homogeneity of Gd-based garnet transparent ceramic scintillators for gamma spectroscopy. J. Cryst. Growth 379, 79–83 (2013)

    Article  ADS  Google Scholar 

  31. N.J. Cherepy, Z.M. Seeley, S.A., Payne, P.R. Beck, O.B. Drury, S.P. O’Neal, T. Stefanik et al., Development of transparent ceramic Ce-doped gadolinium garnet gamma spectrometers. IEEE Trans. Nucl. Sci. 60(3), 2330–2335 (2013)

    Article  ADS  Google Scholar 

  32. N.J. Cherepy, Z.M. Seeley, S.A. Payne, E.L. Swanberg, P.R. Beck, D. Schneberk et al., Transparent ceramic scintillators for gamma spectroscopy and MeV imaging. Hard X-ray, Gamma-ray, and neutron detector physics XVII 9593, 95930P (2015)

    Article  Google Scholar 

  33. K. Kamada, T. Yanagida, J. Pejchal, M. Nikl, T. Endo, K. Tsutumi, Y. Fujimoto, A. Fukabori, A. Yoshikawa, Scintillator-oriented combinatorial search in Ce-doped (Y,Gd)3(Ga,Al)5O12 multicomponent garnet compounds. J. Phys. D: Appl. Phys. 44(50), 505104 (2011)

    Article  Google Scholar 

  34. K. Kamada, S. Kurosawa, P. Prusa, M. Nikl, V.V Kochurikhin, T. Endo et al., Cz grown 2-in. size Ce:Gd3(Al,Ga)5O12 single crystal; relationship between Al, Ga site occupancy and scintillation properties. Opt. Mater. 36(12), 1942–1945 (2014)

    Google Scholar 

  35. H. Yagi, T. Yanagitani, H. Yoshida, M. Nakatsuka, K. Ueda, The optical properties and laser characteristics of Cr3+ and Nd3+ co-doped Y3Al5O12 ceramics. Opt. Laser Technol. 39(6), 1295–1300 (2007)

    Article  ADS  Google Scholar 

  36. J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A.A. Kaminskii, H. Yagi, T. Yanagitani, Optical properties and highly efficient laser oscillation of Nd:YAG ceramics. Applied Physics B 71(4), 469–473 (2000)

    Article  Google Scholar 

  37. P.V. Karpyuk, D.E. Kuznetsova, K.B. Bogatov, G.A. Dosovitskiy, Application of laser diffraction method for measurement of particle size distribution of the YAG powders, submitted to Zavodskaya Laboratoriya (in Russian), Private Communication, 12.10.2018

    Google Scholar 

  38. E. Gordienko, A. Fedorov, E. Radiuk, V. Mechinsky, G. Dosovitskiy, E. Vashchenkova et al., Synthesis of crystalline Ce-activated garnet phosphor powders and technique to characterize their scintillation light yield. Opt. Mater. 78, 312–318 (2018)

    Article  ADS  Google Scholar 

  39. C.B. Carter, M.G. Norton, in Ceramic Materials: Science and Engineering (Springer, 2007)

    Google Scholar 

  40. M. Rubat du Merac, H.J. Kleebe, M.M. Müller, I.E. Reimanis, Fifty years of research and development coming to fruition; unraveling the complex interactions during processing of transparent magnesium aluminate (MgAl2O4) spinel. J. Am. Ceram. Soc. 96(11), 3341–3365 (2013)

    Article  Google Scholar 

  41. G. Dosovitskiy, Raw Materials for bulk oxide scintillators for gamma-rays, charged particles and neutrons detection, in International Conference on Engineering of Scintillation Materials and Radiation Technologies (Springer, 2017), pp. 85–103

    Google Scholar 

  42. J.G. Kang, M.K. Kim, K. Kim, Preparation and luminescence characterization of GGAG:Ce3+, B3+ for a white light-emitting diode. Mater. Res. Bull. 43(8–9), 1982–1988 (2008)

    Article  Google Scholar 

  43. Y. Wu, M. Nikl, V. Jary, G. Ren, Thermally induced ionization of 5d1 state of Ce3+ ion in Gd3Ga3Al2O12 host. Chem. Phys. Lett. 574, 56–60 (2013)

    Article  ADS  Google Scholar 

  44. A. Ikesue, Y.L. Aung, T. Yoda, S. Nakayama, T. Kamimura, Fabrication and laser performance of polycrystal and single crystal Nd:YAG by advanced ceramic processing. Opt. Mater. 29(10), 1289–1294 (2007)

    Article  ADS  Google Scholar 

  45. Q.Q. Zhu, L.Y. Hao, X. Xu, S. Agathopoulos, D.W. Zheng, C.H. Fang, A novel solid-state synthesis of long afterglow, Si–N co-doped, Y3Al5O12:Ce3+ phosphor. J. Lumin. 172, 270–274 (2016)

    Article  Google Scholar 

  46. S. Nishiura, S. Tanabe, K. Fujioka, Y. Fujimoto, Properties of transparent Ce:YAG ceramic phosphors for white LED. Opt. Mater. 33(5), 688–691 (2011)

    Article  ADS  Google Scholar 

  47. J. Li, X. Sun, S. Liu, X. Li, J.G. Li, D. Huo, A homogeneous co-precipitation method to synthesize highly sinterability YAG powders for transparent ceramics. Ceram. Int. 41(2), 3283–3287 (2015)

    Article  Google Scholar 

  48. L. Wang, F. Zhao, M. Zhang, T. Hou, Z. Li, C. Pan, H. Huang, Preparation and photoluminescence properties of YAG:Ce3+ phosphors by a series of amines assisted co-precipitation method. J. Alloy. Compd. 661, 148–154 (2016)

    Article  Google Scholar 

  49. E.V. Tret’yak, G. P. Shevchenko, M.V. Korjik, Formation of high-density scintillation ceramic from LuAG:Ce+Lu2O3 powders obtained by co-precipitation method. Opt. Materials 46, 596–600 (2015)

    Article  ADS  Google Scholar 

  50. Y. Wang, G. Baldoni, G., Rhodes, W. H., Brecher, C., Shah, A., Shirwadkar, U.,… & Payne, S. Transparent garnet ceramic scintillators for gamma-ray detection, in Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XIV, vol. 8507 (2012), p. 850717

    Google Scholar 

  51. J.Y. Zhang, Z.H. Luo, H.C. Jiang, J. Jiang, C.H. Chen, J.X. Zhang, Z.Z. Gui, N. Xiao, Highly transparent cerium doped gadolinium gallium aluminum garnet ceramic prepared with precursors fabricated by ultrasonic enhanced chemical co-precipitation. Ultrason. Sonochem. 39, 792–797 (2017)

    Article  Google Scholar 

  52. S.A. Hassanzadeh-Tabrizi, E. Taheri-Nassaj, H. Sarpoolaky, Synthesis of an alumina–YAG nanopowder via sol–gel method. J. Alloy. Compd. 456(1–2), 282–285 (2008)

    Article  Google Scholar 

  53. S. Butkute, A. Zabiliute, R. Skaudzius, P. Vitta, A. Beganskiene, A. Zukauskas, A. Kareiva, Sol–gel synthesis, characterization and study of substitution effects in different gallium-containing garnets. J. Sol-Gel. Sci. Technol. 76(1), 210–219 (2015)

    Article  Google Scholar 

  54. L. Franks, R.B. James, M. Fiederle, A. Burger, Hard X-ray, gamma-ray, and neutron detector physics XVII. Proc. SPIE 8142, 81421N-1 (2015)

    Google Scholar 

  55. J.Y. Zhang, Z.H. Luo, Y.F. Liu, H.C. Jiang, J. Jiang, G.Q. Liu, J.X. Zhang, H.M. Qin, Cation-substitution induced stable GGAG:Ce3+ ceramics with improved optical and scintillation properties, J. Eur. Ceram. Soc. 37(15), 4925–4930 (2017)

    Article  Google Scholar 

  56. http://www.nanocerox.com/nano_optical.htm

  57. T.C. Hales, An overview of the Kepler conjecture (1998). arXiv preprint math/9811071

    Google Scholar 

  58. V.N. Manoharan, Colloidal matter: packing, geometry, and entropy. Science 349(6251), 1253751 (2015)

    Article  MathSciNet  Google Scholar 

  59. S.J. Pandey, M. Martinez, J. Hostaša, L. Esposito, M. Baudelet, R. Gaume, Quantification of SiO2 sintering additive in YAG transparent ceramics by laser-induced breakdown spectroscopy (LIBS). Opt. Mater. Express 7(5), 1666–1671 (2017)

    Article  ADS  Google Scholar 

  60. O.L. Khasanov, E.S. Dvilis, Net shaping nanopowders with powerful ultrasonic action and methods of density distribution control. Adv. Appl. Ceram. 107(3), 135–141 (2008)

    Article  Google Scholar 

  61. L. Chretien, L. Bonnet, R. Boulesteix, A. Maitre, C. Salle, A. Brenier, Influence of hot isostatic pressing on sintering trajectory and optical properties of transparent Nd:YAG ceramics. J. Eur. Ceram. Soc. 36(8), 2035–2042 (2016)

    Article  Google Scholar 

  62. B. Yao, H. Su, J. Zhang, Q. Ren, W. Ma, L. Liu, H. Fu, Sintering densification and microstructure formation of bulk Al2O3/YAG eutectic ceramics by hot pressing based on fine eutectic structure. Mater. Des. 92, 213–222 (2016)

    Article  Google Scholar 

  63. L. Bergstrom, Surface and Colloid Chemistry in Advanced Ceramics Processing. (Routledge, 2017)

    Google Scholar 

  64. J. Lu, K.I. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, A.A. Kaminskii, (Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics—a new generation of solid state laser and optical materials. J. Alloy. Compd. 341(1–2), 220–225 (2002)

    Article  Google Scholar 

  65. A.A. Kaminskii, V.B. Kravchenko, Y.L. Kopylov, S.N. Bagayev, V.V. Shemet, A.A. Komarov, Novel polycrystalline laser material: Nd3+:Y3Al5O12 ceramics fabricated by the high‐pressure colloidal slip‐casting (HPCSC) method. Physica Status Solidi(a) 204(7), 2411–2415 (2007)

    Google Scholar 

  66. S. Nishiura, S. Tanabe, K. Fujioka, Y. Fujimoto, M. & Nakatsuka, Preparation and optical properties of transparent Ce:YAG ceramics for high power white LED, in IOP Conference Series: Materials Science and Engineering, vol. 1, No. 1, 012031 (IOP Publishing, 2009)

    Google Scholar 

  67. W. Guo, J. Huang, Y. Lin, Q. Huang, B. Fei, J. Chen et al., A low viscosity slurry system for fabricating chromium doped yttrium aluminum garnet (Cr:YAG) transparent ceramics. J. Eur. Ceram. Soc. 35(14), 3873–3878 (2015)

    Article  Google Scholar 

  68. X.J. Wan, Y.C. Zhang, M. Wang, Y. Liu, Y.S. Li, Preparation and properties of Cr, Nd:YAG transparent ceramics by slip casting. Solid State Phenom. 281, 723–728 (2018)

    Article  Google Scholar 

  69. X. Ba, J. Li, Y. Zeng, Y. Pan, B. Jiang, W. Liu, J. Liu, J. Guo et al., Transparent Y3Al5O12 ceramics produced by an aqueous tape casting method. Ceram. Int. 39(4), 4639–4643 (2013)

    Google Scholar 

  70. C. Ma, F. Tang, H. Lin, W. Chen, G. Zhang, Y. Cao, W. Wang, X.Z. Yuan, Z. Dai, Fabrication and planar waveguide laser behavior of YAG/Nd:YAG/YAG composite ceramics by tape casting. J. Alloys Compd. 640, 317–320 (2015)

    Article  Google Scholar 

  71. Z.M. Seeley, N.J. Cherepy, S.A. Payne, Homogeneity of Gd-based garnet transparent ceramic scintillators for gamma spectroscopy. J. Cryst. Growth. 379, 79–83 (2013)

    Article  ADS  Google Scholar 

  72. D. Komissarenko, P. Sokolov, A. Evstigneeva, I. Shmeleva, A. Dosovitsky, Rheological and curing behavior of acrylate-based suspensions for the DLP 3D printing of complex zirconia parts. Materials 11(12), 2350 (2018)

    Article  ADS  Google Scholar 

  73. S. Maleksaeedi, H. Eng, F.E. Wiria, T.M.H. Ha, Z. He, Property enhancement of 3D-printed alumina ceramics using vacuum infiltration. J. Mater. Process. Technol. 214(7), 1301–1306 (2014)

    Article  Google Scholar 

  74. U. Scheithauer, E. Schwarzer, H.J. Richter, T. Moritz, Thermoplastic 3D printing—an additive manufacturing method for producing dense ceramics. Int. J. Appl. Ceram. Technol. 12(1), 26–31 (2015)

    Article  Google Scholar 

  75. U. Scheithauer, E. Schwarzer, T. Moritz, A. Michaelis, Additive manufacturing of ceramic heat exchanger: opportunities and limits of the lithography-based ceramic manufacturing (LCM). J. Mater. Eng. Perform. 27(1), 14–20 (2018)

    Article  Google Scholar 

  76. G.A. Dosovitskiy, P.V. Karpyuk, P.V. Evdokimov, D.E. Kuznetsova, V.A. Mechinsky, A.E. Borisevich et al., First 3D-printed complex inorganic polycrystalline scintillator. CrystEngComm 19(30), 4260–4264 (2017)

    Article  Google Scholar 

  77. Z.M. Deng, L. Gou, J.G. Ran, Study on rheological properties of Yb:YAG slurry by slip casting process. Bull. Chin. Ceram. Soc. 2, 010 (2013)

    Google Scholar 

  78. X. Ba, J. Li, Y. Zeng, Y. Pan, B. Jiang, W. Liu, J. Liu, J. Guo et al., Transparent Y3Al5O12 ceramics produced by an aqueous tape casting method. Ceramics International, 39(4), 4639–4643 (2013)

    Google Scholar 

  79. Y.D. Tretyakov, Solid-phase reactions. Chemistry (1978)

    Google Scholar 

  80. E.S. Lukin, Theoretical Foundations of Production and Technology of Optically Transparent Ceramics, vol. 36 (Moscow, 1982) (In Russian)

    Google Scholar 

  81. A. Ikesue, T. Kinoshita, K. Kamata, K. Yoshida, Fabrication and optical properties of high-Performance polycrystalline Nd:YAG ceramics for solid-State lasers. J. Am. Ceram. Soc. 78(4), 1033–1040 (1995)

    Article  ADS  Google Scholar 

  82. R. Boulesteix, A. Maitre, J.F. Baumard, C. Sallé, Y. Rabinovitch, Mechanism of the liquid-phase sintering for Nd: AG ceramics. Opt. Mater. 31(5), 711–715 (2009)

    Article  ADS  Google Scholar 

  83. A. Yoshikawa, V. Chani, M. Nikl, Czochralski growth and properties of scintillating crystals. Acta Phys. Pol. A 124(2), 251 (2013)

    Article  Google Scholar 

  84. Y. Wang, G. Baldoni, W.H. Rhodes, C. Brecher, A. Shah, U. Shirwadkar, J. Glodo, N. Cherepy, S. Payne, Transparent garnet ceramic scintillators for gamma-ray detection, in Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XIV, vol. 8507 (International Society for Optics and Photonics, 2012 October), p. 850717

    Google Scholar 

  85. A. Maître, C. Sallé, R. Boulesteix, J.F. Baumard, Y. Rabinovitch, Effect of silica on the reactive sintering of polycrystalline Nd:YAG ceramics. J. Am. Ceram. Soc. 91(2), 406–413 (2008)

    Article  Google Scholar 

  86. T. Zhou et al., MgO assisted densification of highly transparent YAG ceramics and their microstructural evolution. J. Eur. Ceram. Soc. 38, 687–693 (2018)

    Article  Google Scholar 

  87. S. Zamir, Solubility limit of Si in YAG at 1700 °C in vacuum. J. Eur. Ceram. Soc. 37, 243–248 (2017)

    Article  Google Scholar 

  88. W. Zhang et al., Co-precipitation synthesis and vacuum sintering of Nd:YAG powders for transparent ceramics. Mater. Res. Bull. 70, 365–372 (2015)

    Article  Google Scholar 

  89. S. Chen et al., Fabrication of Ce:(Gd2Y)(Ga3Al2)O12 scintillator ceramic by oxygen-atmosphere sintering and hot isostatic pressing. J. Eur. Ceram. Soc. 37, 3411–3415 (2017)

    Article  Google Scholar 

  90. R. Chaim, Densification mechanisms in spark plasma sintering of nanocrystalline ceramics. Mater. Sci. Eng. 443, 25–32 (2007)

    Article  Google Scholar 

  91. R. Chaim, M. Kalina, J.Z. Shen, Transparent yttrium aluminum garnet (YAG) ceramics by spark plasma sintering. J. Eur. Ceram. Soc. 27, 3331–3337 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

The work on ceramics for neutron detection is supported by Russian Federation Government (grant number 14.W03.31.0004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Dosovitskiy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Karpyuk, P.V. et al. (2019). Ceramic Scintillation Materials—Approaches, Challenges and Possibilities. In: Korzhik, M., Gektin, A. (eds) Engineering of Scintillation Materials and Radiation Technologies. ISMART 2018. Springer Proceedings in Physics, vol 227. Springer, Cham. https://doi.org/10.1007/978-3-030-21970-3_5

Download citation

Publish with us

Policies and ethics