Skip to main content

Fluctuations of Track Structure and Energy Resolution of Scintillators

  • Conference paper
  • First Online:
Engineering of Scintillation Materials and Radiation Technologies (ISMART 2018)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 227))

Abstract

The problem of intrinsic energy resolution of scintillators is studied in terms of the distribution of concentration of electrons around holes in the track, probability of photon emission from regions with high electron-hole concentration and probability that photons are emitted in the shaping time interval from regions with low concentration. The paper shows how fluctuations of the measured response is connected with the fluctuations in the track.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.V. Gektin, A.N. Vasil’ev, Funct. Mater. 24, 621 (2017)

    Article  Google Scholar 

  2. P. Dorenbos, J. de Haas, C. van Eijk, Non-proportionality in the scintillation response and the energy resolution obtainable with scintillation crystals. IEEE Trans. Nucl. Sci. 42, 2190–2202 (1995)

    Article  ADS  Google Scholar 

  3. M. Moszynski, A. Nassalski, A. Syntfeld-Kazuch, L. Swiderski, T. Szczecsniak, Energy resolution of scintillation detectors—new observations. IEEE Trans. Nucl. Sci. 55, 1062–1068 (2008)

    Article  ADS  Google Scholar 

  4. M. Moszyński, A. Syntfeld-Każuch, L. Swiderski, M. Grodzicka, J. Iwanowska, P. Sibczyński, T. Szczęśniak, Energy resolution of scintillation detectors. Nucl. Instrum. Methods Phys. Res. A 805, 25–35 (2016)

    Article  ADS  Google Scholar 

  5. S. Gridin, D.R. Onken, R.T. Williams, L. Swiderski, Z. Mianowska, A. Syntfeld-Kazuch, M. Moszynski, V. Gayshan, S. Vasiukov, A. Gektin, Pulse shape analysis of individual gamma events—correlation to energy resolution and the possibility of its improvement. J. Appl. Phys. 124, 154504 (2018)

    Article  ADS  Google Scholar 

  6. J.D. Valentine, B.D. Rooney, J. Li, The light yield nonproportionality component of scintillator energy resolution. IEEE Trans. Nucl. Sci. 45, 512–517 (1998)

    Article  ADS  Google Scholar 

  7. S.A. Payne, N.J. Cherepy, G. Hull, J.D. Valentine, W.W. Moses, W.-S. Choong, Nonproportionality of scintillator detectors: theory and experiment. IEEE Trans. Nucl. Sci. 56, 2506–2512 (2009)

    Article  ADS  Google Scholar 

  8. S.A. Payne, W.W. Moses, S. Sheets, L. Ahle, N.J. Cherepy, B. Sturm, S. Dazeley, G. Bizarri, W.-S. Choong, Nonproportionality of scintillator detectors: theory and experiment II. IEEE Trans. Nucl. Sci. 58, 3392–3402 (2011)

    Article  ADS  Google Scholar 

  9. S.A. Payne, S. Hunter, L. Ahle, N.J. Cherepy, E. Swanberg, Nonproportionality of scintillator detectors. III. Temperature dependence studies. IEEE Trans. Nucl. Sci. 61, 2771–2777 (2014)

    Article  ADS  Google Scholar 

  10. S.A. Payne, Nonproportionality of scintillator detectors. IV. Resolution contribution from delta-rays. IEEE Trans. Nucl. Sci. 62, 372–380 (2015)

    Article  ADS  Google Scholar 

  11. P. Lecoq, A. Annenkov, A. Gektin, M. Korzhik, C. Pedrini, Inorganic Scintillators for Detector Systems (Springer, 2006)

    Google Scholar 

  12. A. Vasil’ev, in Engineering of Scintillation Materials and Radiation Technologies, vol. 200. Springer Proceedings in Physics (Springer, 2017), pp. 3–34

    Google Scholar 

  13. F. Gao, Y. Xie, S. Kerisit, L.W. Campbell, W.J. Weber, Yield, variance and spatial distribution of electron–hole pairs in CsI. Nucl. Instrum. Methods Phys. Res. A 652, 564–567 (2011)

    Article  ADS  Google Scholar 

  14. A. Vasil’ev, Fast processes in scintillators, in Engineering of Scintillation Materials and Radiation Technologies (Springer, this issue)

    Google Scholar 

  15. M. Kirm, V. Nagirnyi, E. Feldbach, M. De Grazia, B. Carre, H. Merdji, S. Guizard, G. Geoffroy, J. Gaudin, N. Fedorov, P. Martin, A. Vasil’ev, A. Belsky, Exciton-exciton interactions in CdWO4 irradiated by intense femtosecond vacuum ultraviolet pulses. Phys. Rev. B 79, 233103 (2009)

    Article  ADS  Google Scholar 

  16. R.T. Williams, J.Q. Grim, Q. Li, K.B. Ucer, W.W. Moses, Excitation density, diffusion drift, and proportionality in scintillators. Phys. Status Solidi (b) 248, 426–438 (2011)

    Article  ADS  Google Scholar 

  17. A. Lempicki, A.J. Wojtowicz, E. Berman, Fundamental limits of scintillator performance. Nucl. Instrum. Methods Phys. Res. A 333, 304–311 (1993)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was done in frames of Crystal Clear Collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei N. Vasil’ev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gektin, A., Vasil’ev, A.N. (2019). Fluctuations of Track Structure and Energy Resolution of Scintillators. In: Korzhik, M., Gektin, A. (eds) Engineering of Scintillation Materials and Radiation Technologies. ISMART 2018. Springer Proceedings in Physics, vol 227. Springer, Cham. https://doi.org/10.1007/978-3-030-21970-3_3

Download citation

Publish with us

Policies and ethics