Skip to main content

Fast Processes in Scintillators

  • Conference paper
  • First Online:
Engineering of Scintillation Materials and Radiation Technologies (ISMART 2018)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 227))

  • 670 Accesses

Abstract

Development of new generation of accelerators for high energy physics with extremely high luminosity and new demands from medical imaging with PET requires fast scintillators with response of 10 ps. During last few years the physics of fast processes in scintillators attracts attention of the community. These processes include fast emission which occur in parallel with relaxation of electronic excitations (intraband luminescence, crossluminescence and other types of hot emission) and fast energy transfer to activators and new ways of fast creation of emission centers like capture of an electron by Ce4+ ions, and some other phenomena. The paper reviews the formation of scintillating signal in such systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Lecoq, M.Korzhik, A. Vasil’ev, Can transient phenomena help improving time resolution in scintillators. IEEE Trans. Nucl. Sci. 61, 229 (2014)

    Article  ADS  Google Scholar 

  2. S.E. Derenzo, W.W. Moses, R.H. Huesman, T.F. Budinger, Critical instrumentation issues for < 2 mm resolution, high sensitivity brain PET. Ann. Nucl. Med. 7, S3–S3 (1993)

    Google Scholar 

  3. P. Lecoq, Pushing the Limits in Time-of-Flight PET Imaging. IEEE Trans. Radiation Plasma Med. Sci. 1(6), 473–485 (2017)

    Article  Google Scholar 

  4. C. Dujardin et al., Needs, trends, and advances in inorganic scintillators. IEEE Trans. Nucl. Sci. 65(8), 1977–1997 (2018)

    Article  ADS  Google Scholar 

  5. R. Turtos, S. Gundacker, A. Polovitsyn, S. Christodoulou, M. Salomoni, E. Auffray, I. Moreels, P. Lecoq, J. Grim, Ultrafast emission from colloidal nanocrystals under pulsed X-ray excitation. J. Instrum. 11(10), P10 015 (2016)

    Article  ADS  Google Scholar 

  6. D.R. Schaart et al., LaBr3:Ce and SiPMs for time-of-flight PET: achieving 100 ps coincidence resolving time. Phys. Med. Biol. 55(7) (2010)

    Article  ADS  Google Scholar 

  7. M.V. Nemallapudi et al., Sub-100 ps coincidence time resolution for positron emission tomography with LSO: Ce codoped with Ca. Phys. Med. Biol. 60(12), 4635–4649 (2015)

    Article  Google Scholar 

  8. J.W. Cates, C.S. Levin, Advances in coincidence time resolution for PET. Phys. Med. Biol. 61(6), 2255–2264 (2016)

    Article  Google Scholar 

  9. S. Gundacker et al., State of the art timing in TOF-PET detectors with LuAG, GAGG and L(Y)SO scintillators of various sizes coupled to FBK-SiPMs. J. Instrum. 11(8) (2016)

    Article  ADS  Google Scholar 

  10. P. Lecoq, A. Annenkov, A. Gektin, M. Korzhik, C. Pedrini, Inorganic Scintillators for Detector Systems (Springer, Berlin, 2006)

    Google Scholar 

  11. A.N. Vasil’ev, Microtheory of scintillation in crystalline materials, in Engineering of Scintillation Materials and Radiation Technologies (2017), pp. 3–34

    Google Scholar 

  12. A.N. Vasil’ev, From luminescence non-linearity to scintillation nonproportionality. IEEE Trans. Nucl. Sci. 55(3), 1054–1061 (2008)

    Article  ADS  Google Scholar 

  13. A.N. Vasil’ev, A.V. Gektin, Multiscale approach to estimation of scintillation characteristics. IEEE Trans. Nucl. Sci. 61, 235–245 (2014)

    Article  ADS  Google Scholar 

  14. A. Gektin, A. Vasil’ev, Scintillation, phonon and defect channel balance; the sources for fundamental yield increase. Funct. Mater. 23(2), 183–190 (2016)

    Article  Google Scholar 

  15. F. Gao, Y. Xie, S. Kerisit, L.W. Campbell, W.J. Weber, Yield, variance and spatial distribution of electron–hole pairs in CsI. NIM A 652, 564–567 (2011)

    Article  ADS  Google Scholar 

  16. R. Kirkin, V.V. Mikhailin, A.N. Vasil’ev, Recombination of correlated electron-hole pairs with account of hot capture with emission of optical phonons. IEEE Trans. Nucl. Sci. 59(5), 2057–2064 (2012)

    Article  ADS  Google Scholar 

  17. Z. Wang, Y. Xie, B.D. Cannon, L.W. Campbell, F. Gao, S. Kerisit, Computer simulation of electron thermalization in CsI and CsI(Tl). J. Appl. Phys. 110, 064903 (2011)

    Article  ADS  Google Scholar 

  18. Z. Wang, Y. Xie, L.W. Campbell, F. Gao, S. Kerisit, Monte Carlo simulations of electron thermalization in alkali iodide and alkaline-earth fluoride scintillators. J. Appl. Phys. 112, 014906 (2012)

    Article  ADS  Google Scholar 

  19. D. Vaisburd, O. Koroleva, S. Kharitonova, Instantaneous spectrum of passively ionized electrons in a dielectric irradiated by a high-power electron beam. Russ. Phys. J. 39(11), 1114–1121 (1996)

    Article  Google Scholar 

  20. R.G. Deich, M. Karklina, L. Nagli, Intraband luminescence of CsI crystal, Solid State Commun. 71(10), 859–862 (1989)

    Article  ADS  Google Scholar 

  21. S.I. Omelkov, V. Nagirnyi, A.N. Vasil’ev, M. Kirm, New features of hot intraband luminescence for fast timing. J. Lumin. 176, 309–317 (2016)

    Article  Google Scholar 

  22. G. Bizarri, W.W. Moses, J. Singh, A.N. Vasil’ev, R.T. Williams, An analytical model of nonproportional scintillator light yield in terms of recombination rates. J. Appl. Phys. 105, 044507_1–044507_115 (2009)

    Article  ADS  Google Scholar 

  23. G. Bizarri, W.W. Moses, J. Singh, A.N. Vasil’ev, R.T. Williams, The role of different linear and non-linear channels of relaxation in scintillator non-proportionality. J. Lumin. 129, 1790–1793 (2009)

    Article  ADS  Google Scholar 

  24. X. Lu, Q. Li, G.A. Bizarri, K. Yang, M.R. Mayhugh, P.R. Menge, R.T. Williams, Coupled rate and transport equations modeling proportionality of light yield in high-energy electron tracks: CsI at 295 K and 100 K; CsI: Tl at 295 K. Phys. Rev. B 92(11), 115207 (2015)

    Article  ADS  Google Scholar 

  25. J.Q. Grim, Q. Li, K.B. Ucer, A. Burger, G.A. Bizarri, W.W. Moses, R.T. Williams, The roles of thermalized and hot carrier diffusion in determining light yield and proportionality of scintillators. Physica Status Solidi (a) 209, (12), 2421–2426 (2012)

    Article  ADS  Google Scholar 

  26. Q. Li, J.Q. Grim, K.B. Ucer, A. Burger, G.A. Bizarri, W.W. Moses, R.T. Williams, Host structure dependence of light yield and proportionality in scintillators in terms of hot and thermalized carrier transport. Physica Status Solidi (RRL)-Rapid Research Letters 6 (8), 346–348 (2012)

    Article  ADS  Google Scholar 

  27. Q. Li, J.Q. Grim, R.T. Williams, G.A. Bizarri, W.W. Moses, A transport-based model of material trends in nonproportionality of scintillators. J. Appl. Phys. 109(12), 123716 (2011)

    Article  ADS  Google Scholar 

  28. R.T. Williams, J.Q. Grim, Q. Li, K.B. Ucer, W.W. Moses, Excitation density, diffusion-drift, and proportionality in scintillators. Physica status Solidi (b) 248(2), 426–438 (2011)

    Article  ADS  Google Scholar 

  29. M. Kirm, V. Nagirnyi, E. Feldbach, M. De Grazia, B. Carre, H. Merdji, S. Guizard, G. Geoffroy, J. Gaudin, N. Fedorov, P. Martin, A. Vasil’ev, A. Belsky, Exciton-exciton interactions in CdWO4 irradiated by intense femtosecond vacuum ultraviolet pulses. Phys. Rev. B 79, 233103 (2009)

    Google Scholar 

  30. N. Fedorov, A. Belsky, E. Constant, D. Descamps, P. Martin, A.N. Vasil’ev, Quenching of excitonic luminescence of alkaline earth fluorides excited by VUV harmonics of femtosecond laser. J. Lumin. 129, 1813–1816 (2009)

    Article  Google Scholar 

  31. J.Q. Grim, K.B. Ucer, A. Burger, P. Bhattacharya, E. Tupitsyn, E. Rowe et al., Nonlinear quenching of densely excited states in wide-gap solids. Phys. Rev. B 87(12), 125117 (2013)

    Article  ADS  Google Scholar 

  32. S. Gridin, A. Belsky, C. Dujardin, A. Gektin, N. Shiran, A. Vasil’ev, Kinetic Model of energy relaxation in CsI: A (A = Tl and In) scintillators. J. Phys. Chem. C 119, 20578–20590 (2015)

    Article  Google Scholar 

  33. S. Gridin, A.N. Vasil’ev, A. Belsky, N. Shiran, A. Gektin, Excitonic and activator recombination channels in binary halide scintillation crystals. Phys. Status Solidi B 251, 942–949 (2014)

    Article  ADS  Google Scholar 

  34. A.N. Vasil’ev, R.V. Kirkin, Emission spectrum of intraband luminescence for single parabolic band under excitation of wide-band-gap insulators by ionizing radiation and particles. Phys. Wave Phenom. 23, 186–191 (2015)

    Article  ADS  Google Scholar 

  35. V.N. Makhov, Nucl. Instr. Meth. A 308, 187 (1991)

    Article  ADS  Google Scholar 

  36. Y. Kayanuma, A. Kotani, J. Electron Spectrosc. Relat. Phenom. 79, 219 (1996)

    Article  Google Scholar 

  37. O.I. Baum, A.N. Vasil’ev, Modification of crossluminescence spectra due to localization of core hole: tight-binding approximation, in Proceedings of International Conference on Inorganic Scintillators and Their Applications (SCINT99), Moscow (2000), pp. 453–457

    Google Scholar 

  38. R. Novotny, in Proceedings of International Conference on Inorganic Scintillators and Their Applications (SCINT95). (Delft University Press, The Netherlands, 1996), pp. 70–73

    Google Scholar 

  39. R.A. Glukhov, C.Pedrini, A.N. Vasil’ev, A.M. Yakunin, Track effects in crossluminescence, in Proceedings of International Conference on Inorganic Scintillators and Their Applications (SCINT99), Moscow (2000), pp. 446–452

    Google Scholar 

  40. S. Gundacker, E. Auffray, K. Pauwels, P. Lecoq, Measurement of intrinsic rise times for various L(Y)SO and LuAG scintillators with a general study of prompt photons to achieve 10 ps in TOF-PET. Phys. Med. Biol. 61, 2802–2837 (2016)

    Article  Google Scholar 

  41. A. Belsky, K. Ivanovskikh, A. Vasil’Ev, M.F. Joubert, C. Dujardin, Estimation of the electron thermalization length in ionic materials. J. Phys. Chem. Lett. 4(20), 3534–3538 (2013)

    Article  Google Scholar 

  42. E. Auffray et al., Luminescence rise time in self-activated PbWO4 and Ce-doped Gd3Al2Ga3O12 scintillation crystals. J. Lumin. 178, 54–60 (2016)

    Google Scholar 

  43. G. Tamulaitis, A. Vaitkeviˇcius, S. Nargelas, R. Augulis, V. Gulbinas, P. Bohacek, M. Nikl, A. Borisevich, A. Fedorov, M. Korjik, E. Auffray, Subpicosecond luminescence rise time in magnesium codoped GAGG: Ce scintillator. NIM A 870, 25–29 (2017)

    Article  ADS  Google Scholar 

  44. M.T. Lucchini et al., Effect of Mg2+ ions co-doping on timing performance and radiation tolerance of Cerium doped Gd3Al2Ga3O12 crystals. NIM A 816, 176–183 (2016)

    Article  ADS  Google Scholar 

  45. G. Tamulatis, A. Vasil’ev, M. Korzhik, A. Mazzi, A. Gola, S. Nargelas, A. Vaitkevičius, A. Fedorov, D. Kozlov, Improvement of the time resolution of radiation detectors based on Gd3Al2Ga3O12 scintillators with SiPM readout. IEEE TNS (in press) (2019)

    Google Scholar 

  46. A. Belsky, K. Lebbou, V. Kononets, O. Sidletskiy, A. Gektin, E. Auffray, D. Spassky, A.N. Vasil’ev, Decay Mechanisms in YAG-Ce,Mg Fibers Excited by γ- and X-rays. Opt. Mater. (in press) (2019)

    Google Scholar 

Download references

Acknowledgements

This research is carried out in the frame of Crystal Clear Collaboration and is supported by a European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 644260 (INTELUM) and COST ACTION TD1401 (FAST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei N. Vasil’ev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vasil’ev, A.N. (2019). Fast Processes in Scintillators. In: Korzhik, M., Gektin, A. (eds) Engineering of Scintillation Materials and Radiation Technologies. ISMART 2018. Springer Proceedings in Physics, vol 227. Springer, Cham. https://doi.org/10.1007/978-3-030-21970-3_1

Download citation

Publish with us

Policies and ethics