Skip to main content

Coincidence Time Resolution Measurements with Scintillators

  • Chapter
  • First Online:
Physics of Fast Processes in Scintillators

Abstract

This chapter reviews the technique of coincidence time resolution (CTR) using scintillators as the primary detectors of γ-quanta exploited in these measurements, which are quite often used to characterize the timing capabilities of scintillating materials. The contributions of different factors affecting the measurements are analyzed. The recent results obtained by using the CTR technique for studying the currently prospective scintillators are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Post, L. Schiff, Statistical limitations on the resolving time of a scintillation counter. Phys. Rev. 80, 1113 (1950)

    Article  ADS  MathSciNet  Google Scholar 

  2. E. Gatti, V. Svelto, Theory of time resolution in scintillation counters. Nucl. Instrum. Methods 4, 189–201 (1959)

    Article  ADS  Google Scholar 

  3. L.G. Hyman, R.M. Schwarz, R.A. Schluter, Study of high-speed photomultiplier systems. Rev. Sci. Instrum. 35, 393–406 (1964)

    Article  ADS  Google Scholar 

  4. L.G. Hyman, Time resolution of photomultiplier systems. Rev. Sci. Instrum. 36, 193–196 (1965)

    Article  ADS  Google Scholar 

  5. F. Lynch, in Basic limitation of scintillation counters in time measurements. At Nuclear Science Symposium and 14th Scintillation and Semiconductor Counter Symposium, Washington, DC, 11–13 December 1974

    Google Scholar 

  6. E. Gatti, V. Svelto, Revised theory of time resolution in scintillation counters. Nucl. Instrum. Methods 30, 213–223 (1964)

    Article  ADS  Google Scholar 

  7. E. Gatti, V. Svelto, Review of theories and experiments of resolving time with scintillation counters. Nucl. Instrum. Methods 43, 248–268 (1966)

    Article  ADS  Google Scholar 

  8. Y.K. Akimov, S.V. Medved, On the theory of the resolving time of scintillation counters. Nucl. Instrum. Methods 78, 151–153 (1970)

    Article  ADS  Google Scholar 

  9. S. Derenzo, M. Weber, W. Moses, C. Dujardin, Measurements of the intrinsic rise time of common inorganic scintillators. IEEE Trans. Nucl. Sci. 47, 860–864 (2000)

    Article  ADS  Google Scholar 

  10. M. Moszynski, Study of light collection process from cylindrical scintillators. Nucl. Instr. Methods 134, 77–85 (1976)

    Article  Google Scholar 

  11. S. Derenzo, W.-S. Choong, W. Moses, Fundamental limits of scintillation detector timing precision. Phys. Med. Biol. 59, 3261–3286 (2014)

    Article  Google Scholar 

  12. S. Siefert et al., A comprehensive model to predict the timing resolution of SiPM-based scintillation detectors: theory and experimental validation. IEEE Trans. Nucl. Sci. 59, 190–204 (2012)

    Article  ADS  Google Scholar 

  13. A. Schwarzschild, A survey of the latest developments in delayed coincidence measurements. Nucl. Instr. Methods 21, 1–16 (1963)

    Article  Google Scholar 

  14. M.V. Nemallapudi et al., Sub-100 ps coincidence tme resolution for positron emission tomography with LSO:Ce codoped with Ca. Phys. Med. Biol. 60, 4635–4649 (2015)

    Article  Google Scholar 

  15. S. Gundacker et al., State of the art timing in TOF-PET detectors with LuAG, GAGG and L(Y)SO scintillators of various sizes coupled to FBK-SiPMs. J. Instrum. 11, 08008 (2016)

    Article  Google Scholar 

  16. E. Pratiwi, K. Kamada, S. Yamamoto, M.N. Ullah, J.-Y. Yeom, A. Yoshikawa, J.H. Park, Studies on sub-millimeter LYSO:Ce, Ce:GAGG, and a new Ce:GFAG block detector for PET using digital silicon photomultiplier. Nucl. Instr. Methods 911, 115–122 (2018)

    Article  ADS  Google Scholar 

  17. S. Gundacker, Dissertation, Vienna University of Technology, 2014

    Google Scholar 

  18. A. Leroy, P.-G. Rancoita, Principles of Radiation Interaction in Matter and Detection (Word Scientific Publishing Co Pvt Ltd, New Jersey, 2016)

    Book  Google Scholar 

  19. Technical Proposal for a MIP Timing Detector in the CMS experiment Phase 2 upgrade, Tech. Rep. CERN-LHCC-2017-027. LHCC-P-009, CERN, Geneva (Dec 2017)

    Google Scholar 

  20. Y.F. Yang, P. Dokhale, Depth of interaction resolution measurements for a high-resolution PET detector using position-sensitive avalanche photodiodes. Phys. Med. Biol. 51, 2131–2142 (2006)

    Article  Google Scholar 

  21. M. Moszunski, C. Gresset, J. Vacher, R. Odry, Timing properties of BGO scintillator. Nucl. Instr. Methods 188, 403–409 (1981)

    Article  Google Scholar 

  22. J. Petzoldt, K. Romer et al, in Fast Timing with BGO (and Other Scintillators) on Digital Silicon Photomultipliers for Prompt Gamma-Imaging, IEEE 978-1-4799-6097 (2014)

    Google Scholar 

  23. R. Martinez Turtos, S. Gundacker, E. Auffray, P. Lecoq, Towards a metamaterial approach for fast timing in PET: Experimental proof-of-concept. Phys. Med. Biol. 64, 185018 (2019). https://doi.org/10.1088/1361-6560/ab18b3

    Article  Google Scholar 

  24. A. Mazzi, Private communication, March 2018

    Google Scholar 

  25. N. Kratochwil, S. Gundacker, M. Lucchini, E. Auffray, at VCI 2019 Vienna, Austria, 18–22 February 2019

    Google Scholar 

  26. P.B. Lyons, J. Stevens, Time response of plastic scintillators. Nucl. Instr. Methods 114, 313–320 (1974)

    Article  Google Scholar 

  27. B. Sipp, J. Miehe, Fluorescence self-absorption effect and time resolution in scintillator counters. Nucl. Instr. Methods 114, 255–262 (1974)

    Article  Google Scholar 

  28. M. Moszynski, Study of light collection process from cylindrical scintillators. Nucl. Instr. Methods 134, 77–85 (1976)

    Article  Google Scholar 

  29. M. Moszynski, B. Bengston, Light pulse shapes from plastic scintillators. Nucl. Instr. Methods 142, 417–434 (1976)

    Article  Google Scholar 

  30. Laser etched scintillation detector blocks with internally created reflectors, US Patent 9664800, 2016

  31. Method of manufacturing garnet interfaces and articles containing the garnets obtained therefrom, US Patent 9650569, 2017

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Korzhik, M., Tamulaitis, G., Vasil’ev, A.N. (2020). Coincidence Time Resolution Measurements with Scintillators. In: Physics of Fast Processes in Scintillators. Particle Acceleration and Detection. Springer, Cham. https://doi.org/10.1007/978-3-030-21966-6_8

Download citation

Publish with us

Policies and ethics