Skip to main content

Shallow Traps in Scintillation Materials

  • Chapter
  • First Online:
Physics of Fast Processes in Scintillators

Abstract

This chapter is focused on the shallow traps in scintillators with various crystal structures. Even in single crystals of scintillating materials, defects inevitably occur and play an important role in the excitation transfer phenomena. Special attention in this chapter is paid to the consequences of the modulation of the conduction band bottom due to random distribution of the ions in mixed crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Bom, F. Henecker, A. Hofstaetter, et al., Shallow electron traps in the scintillator material PbWO4 to thermally stimulated luminescence, in Proceedings of the International Workshop on Tungstate Crystals, (Rome, 1998), pp. 139–146

    Google Scholar 

  2. M. Böhm, F. Henecker, A. Hofstaetter, et al., Electron traps in the scintillator material PbWO4 and their correlation to the thermally stimulated luminescence. Radiat. Eff. Defects Solids 150, 413–417 (1999)

    Article  Google Scholar 

  3. V.V. Laguta, J. Rosa, M.I. Zaritski, et al., Polaronic WO4 3− centers in PbWO4 single crystals. J. Phys. Condens. Matter 10, 7293–7302 (1998)

    Article  ADS  Google Scholar 

  4. K.V. den Eechout, A. Bos, D. Poelman, P. Smet, Revealing trap depth distribution in persistent phosphors. Phys. Rev. B 87, 045126 (2013)

    Article  ADS  Google Scholar 

  5. A. Vedda, M. Nikl, M. Fasoli, E. Mihokova, J. Pejchal, M. Dusek, G. Ren, C.R. Stanek, K.J. McClellan, D.D. Byler, Thermally stimulated tunneling in rare-earth-doped oxyorthosilicates. Phys. Rev. B Condens. Matter Mater. Phys. 78, 1–8 (2008)

    Article  Google Scholar 

  6. E. Auffray, M. Korjik, Limits of inorganic crystalline materials to operate in a high dose rate irradiation environment at collider experiments. IEEE Trans. Nucl. Sci. 63, 552–563 (2016)

    Article  ADS  Google Scholar 

  7. A.J.J. Bos, Thermoluminescence as a research tool to investigate luminescence mechanisms. Materials 10, 1357–1378 (2017)

    Article  ADS  Google Scholar 

  8. K.V.R. Murthy, Thermoluminescence and its applications: A review. Defect Diffus. Forum 347, 35–73 (2013)

    Article  Google Scholar 

  9. F. Daniels, C. Boyd, D. Saunders, Thermoluminescence as a research tool. Science 117, 343–349 (1953)

    Article  ADS  Google Scholar 

  10. A.J.J. Bos, Theory of thermoluminescence. Radiat. Meas. 41, 45–56 (2006)

    Article  Google Scholar 

  11. S.W.S. McKeever, Thermoluminescence of Solids (Cambridge University Press, Cambridge, 1988)

    Google Scholar 

  12. R. Chen, V. Pagonis, J.L. Lawless, Evaluated thermoluminescence trapping parameters-What do they really mean? Radiat. Meas. 91, 21–27 (2016)

    Article  Google Scholar 

  13. A. Annenkov, M. Korzhik, P. Lecoq, Lead tungstate scintillation material. Nucl. Instrum. Meth. Phys. Res. A 490, 30–50 (2002)

    Article  ADS  Google Scholar 

  14. E. Auffray et al., Excitation transfer engineering in Ce-doped oxide crystalline scintillators by codoping with alkali-earth ions. Phys. Status Solidi A 215, 1700798 (2018)

    Article  ADS  Google Scholar 

  15. M. Korzhik, P. Lecoq, A. Gektin, Inorganic Scintillators for Detector Systems (Springer, Cham, 2016)

    Google Scholar 

  16. V. Laguta, M. Buryi, S. Tkachenko, P. Arhipov, I. Gerasymov, O. Sidletskiy, M. Nikl, Oxygen-vacancy centers in Y3Al5O12 garnet crystals: Electron paramagnetic resonance and dielectric spectroscopy study, Arxiv:1812.11873

    Google Scholar 

  17. M. Kitara, H. Zen, K. Kamada, et al., Visualizing hidden electron trap levels in Gd3Al2Ga3O12:Ce using a mid-infrared free-electron laser. Appl. Phys. Lett. 112, 031112 (2018)

    Article  ADS  Google Scholar 

  18. W. Kuang, M. V. Fock, Luminescence Centers in Crystals, ed. by N.G. Basov (Consultants Bureau, New York/London, 1976), p. 40

    Google Scholar 

  19. M.V. Fok, Luminescence problem. J. Sov. Laser Res. 4, 145–178 (1983)

    Article  Google Scholar 

  20. M. Nikl, E. Mihokova, J. Pejchal, A. Vedda, Y. Zorenko, K. Nejezchleb, The antisite LuAl defect-related trap in Lu3Al5O12: Ce single crystal. Phys. Status Solidi 242, R119–R121 (2005)

    Article  ADS  Google Scholar 

  21. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in galides and chalcogenides. Acta Crystallogr. 32, 751–767 (1976)

    Article  Google Scholar 

  22. A. Nakatsuka, A. Yoshiasa, T. Yamanaka, Cation distribution and crystal chemistry of Y3Al5-xGaxO12 (0 ≤ x ≤ 5) garnet solid solution. Acta Crystallogr. Sect. B: Struct. Sci. 55, 266–272 (1999)

    Article  Google Scholar 

  23. V. Laguta, M. Buryi, J. Pejchal, V. Babin, M. Nikl, Hole self-trapping in Y3Al5O12 and Lu3Al5O12 garnet crystals. Phys. Rev. Appl. 10, 034058 (2018)

    Article  ADS  Google Scholar 

  24. M. Nikl, A. Vedda, M. Fasoli, I. Fontana, V.V. Laguta, E. Mihokova, J. Pejchal, J. Rosa, K. Nejezchleb, Shallow traps and radiative recombination processes in Lu3Al5O12: Ce single crystal scintillator. Phys. Rev. B 76, 195121 (2007)

    Article  ADS  Google Scholar 

  25. M. Nikl, V. Laguta, A. Vedda, Complex oxide scintillators: Material defects and scintillation performance. Phys. Status Solidi B 245(9), 1701–1722 (2008)

    Article  ADS  Google Scholar 

  26. M.K. Ashurov, Y.K. Voronko, V.V. Osiko, A.A. Sobol, M.I. Timoshechkin, Spectroscopic study of stoichiometry deviation in crystals with garnet structure. Phys. Status Solidi A 42, 101–110 (1977)

    Article  ADS  Google Scholar 

  27. V. Lupei, A. Lupei, C. Tiseanu, S. Georgescu, C. Stoicescu, P.M. Nanau, High-resolution optical spectroscopy of YAG:Nd: A test for structural and distribution models. Phys. Rev. B 51, 8–17 (1995)

    Article  ADS  Google Scholar 

  28. A. Lempicki, J. Glodo, Ce-doped scintillators: LSO and LuAP. Nucl. Inst. Methods Phys. Res. A 416, 333–344 (1998)

    Article  ADS  Google Scholar 

  29. V.V. Laguta, M. Nikl, S. Zazubovich, Photothermally stimulated creation of electron and hole centers in Ce3+-doped Y2SiO5 single crystals. Opt. Mater. (Amst). 36, 1636–1641 (2014)

    Article  ADS  Google Scholar 

  30. A. Belsky, A. Gektin, S. Gridin, A.N. Vasil’ev, Electronic and optical properties of scintillators based on mixed ionic crystals, in Engineering of Scintillation Materials and Radiation Technologies, (Springer, Cham, 2017), pp. 63–82

    Google Scholar 

  31. M. Korzhik, V. Mechinsky, E. Tratsiak, G. Dosovitskiy, P. Sokolov, V. Alenkov, O. Buzanov, A. Fedorov, L. Grigorjeva, A. Zolotarjovs, V. Dormenev, A. Dosovitskiy, D. Agrawal, T. Anniyev, M. Vasilyev, V. Khabashesku, Nanoengineered Gd3Al2Ga3O12 scintillation materials with disordered garnet structure for novel detectors of ionizing radiation. Cryst. Res. Technol. 54, 1800172 (2019)

    Article  Google Scholar 

  32. E. Auffray, R. Augulis, A. Borisevich, V. Gulbinas, A. Fedorov, M. Korjik, M.T. Lucchini, V. Mechinsky, S. Nargelas, E. Songaila, G. Tamulaitis, A. Vaitkevičius, S. Zazubovich, Luminescence rise time in self-activated PbWO4 and Ce-doped Gd3Al2Ga3O12 scintillation crystals. J. Lumin. 178, 54–60 (2016)

    Article  Google Scholar 

  33. M. Fasoli, A. Vedda, M. Nikl, C. Jiang, B.P. Uberuaga, D.A. Andersson, K.J. McClellan, C.R. Stanek, Band-gap engineering for removing shallow traps in rare-earth Lu3Al5O12 garnet scintillators using Ga3+ doping. Phys. Rev. B: Condens. Matter Mater. Phys. 84, 1–4 (2011)

    Article  Google Scholar 

  34. G. Tamulaitis et al., Improvement of the time resolution of radiation detectors based on Gd3Al2Ga3O12 scintillators with SiPM readout. IEEE Trans. Nucl. Sci. 66, 1879–1888 (2019)

    Article  ADS  Google Scholar 

  35. A. Belsky, A. Gektin, A.N. Vasil’ev, Influence of disorder in scintillating solid solutions on thermalization and recombination of electronic excitations, Phys. Status Solidi B, submitted in 2019

    Google Scholar 

  36. A.V. Gektin, A.N. Belsky, A.N. Vasil’ev, Scintillation efficiency improvement by mixed crystal use. IEEE Trans. Nucl. Sci. 61, 262–270 (2014)

    Article  ADS  Google Scholar 

  37. Z. Yan, T. Shalapska, E.D. Bourret, Czochralski growth of the mixed halides BaBrCl and BaBrCl:Eu. J. Cryst. Growth 435, 42–45 (2016)

    Article  ADS  Google Scholar 

  38. U.S. Pat. No. 7,084,403 General Electric Company, Scintillator compositions, and related processes and articles of manufacture A.M. Srivastava

    Google Scholar 

  39. L. Swiderski, M. Moszynski, A. Nassalski, A. Syntfeld-Kazuch, W. Czarnacki, W. Klamra, V.A. Kozlov, Scintillation properties of undoped CsI and CsI doped with CsBr. IEEE Trans. Nucl. Sci. 55, 1241–1245 (2008)

    Article  ADS  Google Scholar 

  40. A. Giaz, G. Hull, V. Fossati, N. Cherepy, F. Camera, et al., Preliminary investigation of scintillator materials properties: SrI2: Eu, CeBr3 and GYGAG: Ce for gamma rays up to 9 MeV. Nucl. Inst. Methods Phys. Res. A 804, 212–220 (2015)

    Article  ADS  Google Scholar 

  41. J. Glodo, Y. Wang, R. Shawgo, C. Brecher, R.H. Hawrami, J. Tower, K.S. Shah, New developments in scintillators for security applications. Phys. Procedia 90, 285–290 (2017)

    Article  ADS  Google Scholar 

  42. A. Vaitkevicius, M. Korjik, E. Tretyak, E. Trusova, G. Tamulaitis, Photoluminescence of barium and lithium silicate glasses and glass ceramics doped with rare earth ions. Int. J. Mater. Metallurgical Eng. 10 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Korzhik, M., Tamulaitis, G., Vasil’ev, A.N. (2020). Shallow Traps in Scintillation Materials. In: Physics of Fast Processes in Scintillators. Particle Acceleration and Detection. Springer, Cham. https://doi.org/10.1007/978-3-030-21966-6_4

Download citation

Publish with us

Policies and ethics