Skip to main content

Development of Excited Region of the Track. Rise and Decay Kinetics of Scintillation

  • Chapter
  • First Online:
Physics of Fast Processes in Scintillators

Abstract

In this chapter, we discuss the concept of the electronic excitations created by ionizing particles in solids, their transformation, interaction, and temporal evolution. This evolution is analyzed for different types of scintillators: self-activated, cross-luminescent and crystals with activators. The formation of excited region in the track of an ionizing particle is especially addressed. The rise and decay kinetics of scintillation is analyzed in terms of the spatial distribution of electronic excitations in crystals with different scintillation origin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Khrutchinsky, M. Korzhik, P. Lecoq, A phenomenon of scintillation in solids. Nucl. Instrum. Methods Phys. Res. Sect. A 486, 381–384 (2002)

    Article  ADS  Google Scholar 

  2. E.R. Ilmas, G.G. Liidja, Ch.B. Lushchik, Photon multiplication in crystals. I. Luminescence excitation spectra of ionic crystals in region 4 to 21 eV. Opt. Spectrosc. (USSR) 18, 255 (1965); Photon multiplication in crystals. 2. Mechanism of photon multiplication. Opt. Spectrosc. (USSR) 18, 359 (1965)

    Google Scholar 

  3. A.N. Vasil’ev, V.N. Kolobanov, I.L. Kuusman, C.B. Lushchik, V.V. Mikhailin, Multiplication of electronic excitations in MgO crystals. Fizika Tverdogo Tela 27, 2696–2702 (1985)

    Google Scholar 

  4. M. Kirm, E. Feldbach, T. Kärner, A. Lushchik, C. Lushchik, A. Maaroos, V. Nagirnyi, I. Martinson, Multiplication of electron–hole pairs in MgO crystals and ceramics. Nucl. Instrum. Methods Phys. Res. Sect. B 141, 431–435 (1998)

    Article  ADS  Google Scholar 

  5. Y.L. Klimontovich, The Kinetic Theory of Electromagnetic Processes (Springer, Berlin/Heidelberg/New York, 1983).

    Google Scholar 

  6. A.N. Vasil’ev, V.V. Mikhailin, Introduction to Solid State Spectroscopy, Part 1 (KDU publishing house, Moscow, 2008)., in Russian)

    Google Scholar 

  7. A.N. Vasil’ev, Microtheory of scintillation in crystalline materials, in Engineering of Scintillation Materials and Radiation Technologies, ed. by A. Gektin and M. Korzhik (Springer, Cham, 2017), pp. 3–34

    Google Scholar 

  8. A.N. Vasil’ev, Polarization approximation for electron cascade in insulators after high-energy excitation. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms. 107, 165–171 (1996)

    Article  ADS  Google Scholar 

  9. M. Inokuti, Inelastic collisions of fast charged particles with atoms and molecules—The Bethe theory revisited. Rev. Mod. Phys. 43, 297–347 (1971)

    Article  ADS  Google Scholar 

  10. https://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html

  11. A.N. Vasil’ev, Y. Fang, V.V. Mikhailin, Impact production of secondary electronic excitations in insulators: Multiple-parabolic-branch band model. Phys. Rev. B 60, 5340–5347 (1999)

    Article  ADS  Google Scholar 

  12. D.I. Vaisburd, K.E. Evdokimov, Creation of excitations and defects in insulating materials by high-current-density electron beams of nanosecond pulse duration. Phys. Status Solidi C 2, 216–222 (2005)

    Article  ADS  Google Scholar 

  13. R. Kirkin, V.V. Mikhailin, A.N. Vasil’ev, Recombination of correlated elec-tron-hole pairs with account of hot capture with emission of optical phonons. IEEE Trans. Nucl. Sci. 59, 2057–2064 (2012)

    Article  ADS  Google Scholar 

  14. Z. Wang, Y. Xie, B.D. Cannon, L.W. Campbell, F. Gao, S. Kerisit, Computer simulation of electron thermalization in CsI and CsI(Tl). J. Appl. Phys. 110, 064903 (2011)

    Article  ADS  Google Scholar 

  15. Z. Wang, Y. Xie, L.W. Campbell, F. Gao, S. Kerisit, Monte Carlo simula-tions of electron thermalization in alkali iodide and alkaline-earth fluoride scintillators. J. Appl. Phys. 112, 014906 (2012)

    Article  ADS  Google Scholar 

  16. D. Vaisburd, O. Koroleva, S. Kharitonova, Instantaneous spectrum of passively ionized electrons in a dielectric irradiated by a high-power electron beam. Russ. Phys. J. 39(11), 1114–1121 (1996)

    Article  Google Scholar 

  17. R.G. Deich, M. Karklina, L. Nagli, Intraband luminescence of CsI crystal. Solid State Commun. 71(10), 859–862 (1989)

    Article  ADS  Google Scholar 

  18. S.I. Omelkov, V. Nagirnyi, A.N. Vasil'ev, M. Kirm, New features of hot intraband luminescence for fast timing. J. Lumin. 176, 309–317 (2016)

    Article  Google Scholar 

  19. A.N. Vasil’ev, Relaxation of hot electronic excitations in scintillators: account for scattering, track effects, complicated electronic structure, in Proceedings of The Fifth International Conference on Inorganic Scintillators and Their Applications, (Faculty of Physics, Moscow State University, Moscow, 2000), pp. 43–52

    Google Scholar 

  20. A. Gektin, A. Vasil’ev, Scintillation, phonon and defect channel balance; the sources for fundamental yield increase. Funct. Mater. 23, 183–190 (2016)

    Article  Google Scholar 

  21. A.N. Belsky, R.A. Glukhov, P. Martin, V.V. Mikhailin, C. Pedrini, A.N. Vasil’ev, VUV excitation of intrinsic luminescence of ionic crystals with complicated band structure. Simulation. J. Lumin. 72–74, 96–97 (1997)

    Google Scholar 

  22. A.N. Belsky, I.A. Kamenskikh, V.V. Mikhailin, C. Pedrini, A.N. Vasil'ev, Energy transfer in inorganic scintillators. Radiat. Eff. Defects Solids 150, 1–10 (1999)

    Article  ADS  Google Scholar 

  23. A.N. Vasil’ev, Final stages of inelastic electron scattering in insulators. Mater. Sci. Forum 239–241, 235–240 (1997)

    Article  Google Scholar 

  24. A.N. Belsky, R.A. Glukhov, I.A. Kamenskikh, P. Martin, V.V. Mikhailin, I.H. Munro, C. Pedrini, D.A. Shaw, I.N. Shpinkov, A.N. Vasilev, Luminescence quenching as a probe for the local density of electronic excitations in insulators. J. Electron Spectrosc. Relat. Phenom. 79, 147–150 (1996)

    Article  Google Scholar 

  25. M.A. Terekhin, A.N. Vasil'ev, M. Kamada, E. Nakamura, S. Kubota, Effect of quenching processes on decay of fast luminescence from barium fluoride excited by VUV synchrotron radiation. Phys. Rev. B 52, 3117–3121 (1995)

    Article  ADS  Google Scholar 

  26. R.A. Glukhov, M. Kamada, S. Kubota, E. Nakamura, S. Ohara, M.A. Terekhin, A.N. Vasil’ev, Effect of quenching processes on decay of fast luminescence from BaF2, in Proceedings, International Conference on Inorganic Scintillators and Their Applications SCINT95, (Delft University Press, Delft, 1996), pp. 204–207

    Google Scholar 

  27. R.A. Glukhov, A.N. Vasil'ev, C. Pedrini, A. Yakunin, Track effects in crossluminescence, in Proceedings of the Fifth International Conference on Inorganic Scintillators and Their Applications, (Faculty of Physics, Moscow State University, Moscow, 2000), pp. 448–453

    Google Scholar 

  28. I.A. Markov, A.N. Vasil’ev, V.V. Veselova, Computer simulation of physical processes in scintillators, in Proceedings of the 8th International Conference on Inorganic Scintillators and Their Use in Scientific and Industrial Applications, (Alushta, Kharkov, 2005), pp. 7–10

    Google Scholar 

  29. A.N. Vasil’ev, V.V. Mikhailin, The role of relaxation through phonon emission in cascade process of multiplication of electronic excitations generated by X-ray quantum. Bull. Acad. Sci. USSR Phys. Ser. 50, 113–116 (1986)

    Google Scholar 

  30. A.N. Vasil’ev, A.V. Gektin, Multiscale approach to estimation of scintillation characteristics. IEEE Trans. Nucl. Sci. 61, 235–245 (2014)

    Article  ADS  Google Scholar 

  31. Z. Wang, Y. Xie, B.D. Cannon, L.W. Campbell, F. Gao, S. Kerisit, Computer simulation of electron thermalization in CsI and CsI(Tl). J. Appl. Phys. 110, 064903 (2011)

    Article  ADS  Google Scholar 

  32. F. Gao, Y. Xie, S. Kerisit, L.W. Campbell, W.J. Weber, Yield, variance and spatial distribution of electron–hole pairs in CsI. Nucl. Inst. Methods Phys. Res. A 652, 564–567 (2011)

    Article  ADS  Google Scholar 

  33. Z. Wang, Y. Xie, L.W. Campbell, F. Gao, S. Kerisit, Monte Carlo simulations of electron thermalization in alkali iodide and alkaline-earth fluoride scintillators. J. Appl. Phys. 112, 014906 (2012)

    Article  ADS  Google Scholar 

  34. A.N. Vasil’ev, From luminescence non-linearity to scintillation nonproportionality. IEEE Trans. Nucl. Sci. 55, 1054–1061 (2008)

    Article  ADS  Google Scholar 

  35. S. Gridin, A. Belsky, C. Dujardin, A. Gektin, N. Shiran, A. Vasil'ev, Kinetic model of energy relaxation in CsI:A (A=Tl and In) scintillators. J. Phys. Chem. C 119, 20578–20590 (2015)

    Article  Google Scholar 

  36. S. Gridin, A.N. Vasil'ev, A. Belsky, N. Shiran, A. Gektin, Excitonic and activator recombination channels in binary halide scintillation crystals. Phys. Status Solidi B 251, 942–949 (2014)

    Article  ADS  Google Scholar 

  37. X. Lu, Q. Li, G.A. Bizarri, K. Yang, M.R. Mayhugh, P.R. Menge, R.T. Williams, Coupled rate and transport equations modeling proportionality of light yield in high-energy electron tracks: CsI at 295 K and 100 K; CsI: Tl at 295 K. Phys. Rev. B 92, 115207 (2015)

    Article  ADS  Google Scholar 

  38. R.T. Williams, K.B. Ucer, J.Q. Grim, K.C. Lipke, L.M. Trefilova, W.W. Moses, Picosecond studies of transient absorption induced by bandgap excitation of CsI and CsI:Tl at room temperature. IEEE Trans. Nucl. Sci. 57, 1187–1192 (2010)

    Article  ADS  Google Scholar 

  39. T.R. Waite, Theoretical treatment of the kinetics of diffusion-limited reactions. Phys. Rev. 107, 463–470 (1957)

    Article  ADS  Google Scholar 

  40. T.R. Waite, General theory of bimolecular reaction rates in solids and liquids. J. Chem. Phys. 28, 463–470 (1958)

    Article  Google Scholar 

  41. V.N. Kuzovkov, E.A. Kotomin, Kinetics of bimolecular reactions in condensed media. Rep. Prog. Phys. 51, 1479–1524 (1988)

    Article  ADS  MATH  Google Scholar 

  42. A.N. Vasil’ev, V.V. Mihailin, I.V. Ovchinnikova, Influence of electron-hole correlations on luminescence of crystalline phosphors with traps. Moscow Univ. Bulletin. Phys. Astron. 28, 50–54 (1987). (in Russian)

    Google Scholar 

  43. R.T. Williams, J.Q. Grim, Q. Li, K.B. Ucer, W.W. Moses, Excitation density, diffusion-drift, and proportionality in scintillators. Phys. Status Solidi B 248, 426–438 (2011)

    Article  ADS  Google Scholar 

  44. Q. Li, J.Q. Grim, K.B. Ucer, A. Burger, G.A. Bizarri, W.W. Moses, R.T. Williams, Host structure dependence of light yield and proportionality in scintillators in terms of hot and thermalized carrier transport. Phys. Status Solidi (RRL) 6, 346–348 (2012)

    Article  ADS  Google Scholar 

  45. X. Lu, Q. Li, G.A. Bizarri, K. Yang, M.R. Mayhugh, P.R. Menge, R.T. Williams, Coupled rate and transport equations modeling proportionality of light yield in high-energy electron tracks: CsI at 295 K and 100 K; CsI: Tl at 295 K. Phys. Rev. B 92, 115207 (2015)

    Article  ADS  Google Scholar 

  46. G. Bizarri, W.W. Moses, J. Singh, A.N. Vasil’ev, R.T. Williams, An analytical model of nonproportional scintillator light yield in terms of recombination rates. J. Appl. Phys. 105, 044507 (2009)

    Article  ADS  Google Scholar 

  47. A. Belsky, K. Ivanovskikh, A. Vasil’ev, M.F. Joubert, C. Dujardin, Estimation of the electron thermalization length in ionic materials. J. Phys. Chem. Lett. 4, 3534–3538 (2013)

    Article  Google Scholar 

  48. V.M. Agranovich, M.D. Galanin, Electronic Excitation Energy Transfer in Condensed Matter (North-Holland Pub Co, Amsterdam/New York, 1983), p. 371

    Google Scholar 

  49. J.B. Birks, The Theory and Practice of Scintillation Counting (Pergamon, New York, 1967).

    Google Scholar 

  50. M. Kirm, V. Nagirnyi, E. Feldbach, M. De_Grazia, B. Carre, H. Merdji, S. Guizard, G. Geoffroy, J. Gaudin, N. Fedorov, P. Martin, A. Vasil’ev, A. Belsky, Exciton-exciton interactions in cdwo4 irradiated by intense femtosecond vacuum ultraviolet pulses. Phys. Rev. B 79, 233103 (2009)

    Article  ADS  Google Scholar 

  51. S. Chernov, R. Deych, L. Grigorjeva, D. Millers, Luminescence and Transient Optical Absorption in CdWO. Mater. Sci. Forum 239-241, 299–302 (1997)

    Article  Google Scholar 

  52. M. Yokota, O. Tanimoto, Effects of diffusion on energy transfer by resonance. J. Phys. Soc. Jpn. 22, 779–784 (1967)

    Article  ADS  Google Scholar 

  53. M.J. Weber, Multiphonon relaxation of rare-earth ions in yttrium Orthoaluminate. Phys. Rev. B 8, 54–64 (1973)

    Article  ADS  Google Scholar 

  54. Z. Onderisinova, M. Kucera, M. Hanus, M. Nikl, Temperature-dependent nonradiative energy transfer from Gd3+ to Ce3+ ions in co-doped LuAG:Ce,Gd garnet scintillators. J. Lumin. 167, 106–113 (2015)

    Article  Google Scholar 

  55. D. Spassky, A. Vasil’ev, A. Belsky, N. Fedorov, P. Martin, S. Markov, O. Buzanov, N. Kozlova, V. Shlegel, Excitation density effects in luminescence properties of CaMoO4 and ZnMoO4. Opt. Mater. 90, 7–13 (2019)

    Article  ADS  Google Scholar 

  56. A. Vedda, M. Fasoli, Tunneling recombinations in scintillators, phosphors, and dosimeters. Radiat. Meas. 118, 86–97 (2018)

    Article  Google Scholar 

  57. G. Bizarri, W.W. Moses, J. Singh, A.N. Vasil’ev, R.T. Williams, The role of different linear and non-linear channels of relaxation in scintillator non-proportionality. J. Lumin. 129, 1790–1793 (2009)

    Article  Google Scholar 

  58. W.W. Moses, G.A. Bizarri, R.T. Williams, S.A. Payne, A.N. Vasil’ev, J. Singh, Q. Li, J.Q. Grim, W.–.S. Choong, The origins of scintillator non-proportionality. IEEE Trans. Nucl. Sci. 59, 2038–2044 (2012)

    Article  ADS  Google Scholar 

  59. A.N. Belsky, private communication, 26 June 2019

    Google Scholar 

  60. S. Gundacker, E. Auffray, K. Pauwels, P. Lecoq, Measurement of intrinsic rise times for various L(Y)SO and LuAG scintillators with a general study of prompt photons to achieve 10 ps in TOF-PET. Phys. Med. Biol. 61, 2802–2837 (2016)

    Article  Google Scholar 

  61. E. Auffray, R. Augulis, A. Borisevich, V. Gulbinas, A. Fedorov, M. Korjik, M.T. Lucchini, V. Mechinsky, S. Nargelas, E. Songaila, G. Tamulaitis, A. Vaitkevičius, S. Zazubovich, Luminescence rise time in self-activated PbWO4 and Ce-doped Gd3Al2Ga3O12 scintillation crystals. J. Lumin. 178, 54–60 (2016)

    Article  Google Scholar 

  62. G. Tamulaitis, A. Vaitkeviˇcius, S. Nargelas, R. Augulis, V. Gulbinas, P. Bohacek, M. Nikl, A. Borisevich, A. Fedorov, M. Korjik, E. Auffray, Subpicosecond luminescence rise time in magnesium codoped GAGG:Ce scintillator. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 870, 25–29 (2017)

    Article  ADS  Google Scholar 

  63. M.H. Du, Chemical trends of electronic and optical properties of ns2 ions in halides. J. Mater. Chem. C 2, 4784–4791 (2014)

    Article  Google Scholar 

  64. P. Dorenbos, Modeling the chemical shift of lanthanide 4f electron binding energies. Phys. Rev. B 85, 165107 (2012)

    Article  ADS  Google Scholar 

  65. P. Dorenbos, Charge transfer bands in optical materials and related defect level location. Opt. Mater. 69, 8–22 (2017)

    Article  ADS  Google Scholar 

  66. C. Pedrini, C. Dujardin, J.C. Gâcon, A.N. Belsky, A.N. Vasil’ev, A.G. Petrosyan, Cerium-doped fluorescent and scintillating ionic crystals. Radiat. Eff. Defects Solids 154, 277–286 (2007)

    Article  ADS  Google Scholar 

  67. G. Tamulatis, A. Vasil’ev, M. Korzhik, A. Mazzi, A. Gola, S. Nargelas, A. Vaitkevičius, A. Fedorov, D. Kozlov, Improvement of the time resolution of radiation detectors based on Gd3Al2Ga3O12 scintillators with SIPM readout. IEEE Trans. Nucl. Sci. 66, 1879–1888 (2019)

    Article  ADS  Google Scholar 

  68. A. Belsky, K. Lebbou, V. Kononets, O. Sidletskiy, A. Gektin, E. Auffray, D. Spassky, A. Vasil'ev, Mechanisms of luminescence decay in YAG-Ce,Mg fibers excited by γ- and X-rays. Opt. Mater. 92, 341–346 (2019)

    Article  ADS  Google Scholar 

  69. M.T. Lucchini, V. Babin, P. Bohacek, S. Gundacker, K. Kamada, M. Nikl, A. Petrosyan, A. Yoshikawa, E. Auffray, Effect of Mg2+ ions co-doping on timing performance and radiation tolerance of Cerium doped Gd3Al2Ga3O12 crystals. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 816, 176–183 (2016)

    Article  ADS  Google Scholar 

  70. Y. Wu, F. Meng, M. Qi Li, C.L. Koschan, Melcher, role of Ce4+ in the scintillation mechanism of Codoped Gd3Ga3Al2O12:Ce. Phys. Rev. Appl. 044009, 2 (2014)

    Google Scholar 

  71. E. Sakai, Recent measurements on scintillator-photodetector systems. IEEE Trans. Nucl. Sci. 34, 418–422 (1987)

    Article  ADS  Google Scholar 

  72. A.N. Belsky, A.N. Vasilev, V.V. Mikhailin, A.V. Gektin, N.V. Shiran, A.L. Rogalev, E.I. Zinin, Time-resolved XEOL spectroscopy of new scintillators based on CsI. Rev. Sci. Instrum. 63, 806–809 (1992)

    Article  ADS  Google Scholar 

  73. A.V. Gektin, N.V. Shiran, A.N. Belskiy, A.N. Vasil’ev, Fast UV scintillations in CsI-type crystals. Nucl. Tracks Radiat. Meas. 21, 11–13 (1993)

    Article  Google Scholar 

  74. H. Nishimura, M. Sakata, T. Tsujimoto, M. Nakayama, Origin of the 4.1-eV luminescence in pure CsI scintillator. Phys. Rev. B 51, 2167–2172 (1995)

    Article  ADS  Google Scholar 

  75. A.N. Belsky, A.N. Vasilev, V.V. Mikhailin, A.V. Gektin, P. Martin, C. Pedrini, D. Bouttet, Experimental-study of the excitation threshold of fast intrinsic luminescence of CsI. Phys. Rev. B 49, 13197–13200 (1994)

    Article  ADS  Google Scholar 

  76. A. Belsky, N. Fedorov, S. Gridin, A. Gektin, P. Martin, D. Spassky, A. Vasil’ev, Time-resolved luminescence z-scan of CsI using power femtosecond laser pulses. Radiat. Meas. 124, 1–8 (2019)

    Article  Google Scholar 

  77. D. Spassky, A. Vasil’ev, A. Belsky, N. Fedorov, P. Martin, S. Markov, O. Buzanov, N. Kozlova, V. Shlegel, Excitation density effects in luminescence properties of CaMoO4 and ZnMoO4. Opt. Mater. 90, 7–13 (2019)

    Article  ADS  Google Scholar 

  78. K. Tanimura, N. Itoh, Relaxation of excitons perturbed by self-trapped excitons in RbI: Evidence for exciton fusion in inorganic solids with strong electron-phonon coupling. Phys. Rev. Lett. 64, 1429–1432 (1990)

    Article  ADS  Google Scholar 

  79. M. Patrick, N. Fedorov, A. Belsky, A.N. Vasil’ev, Free and bound excitons in ZnO at variable excitation density, in Book of abstracts of the 2018 Europhysical Conference on Defects in Insulating Materials, (EURODIM 2018, Bydgoszcz, 2018), p. 136

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Korzhik, M., Tamulaitis, G., Vasil’ev, A.N. (2020). Development of Excited Region of the Track. Rise and Decay Kinetics of Scintillation. In: Physics of Fast Processes in Scintillators. Particle Acceleration and Detection. Springer, Cham. https://doi.org/10.1007/978-3-030-21966-6_3

Download citation

Publish with us

Policies and ethics