Skip to main content

Release of Ionizing Radiation Energy in Inorganic Scintillator

  • Chapter
  • First Online:
Physics of Fast Processes in Scintillators

Abstract

This chapter introduces the basic definitions and describes the energy release in the interaction of scintillation material with different kinds of ionizing radiation. The timing property of the energy deposition is under especial focus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.J. Moon, Inorganic crystals for the detection of high energy particles and quanta. Phys. Rev. 73, 1210 (1948)

    Article  ADS  Google Scholar 

  2. H. Kallmann, Quantitative measurements with scintillation counters. Phys. Rev. 75, 623–626 (1949)

    Article  ADS  Google Scholar 

  3. G.B. Collins, R.C. Hoyt, Detection of beta-rays by scintillations. Phys. Rev. 73, 1259–1260 (1948)

    Google Scholar 

  4. P.R. Bell, The use of anthracen as a scintillation counter. Phys. Rev. 73, 1405–1406 (1948)

    Article  ADS  Google Scholar 

  5. H. Kallmann, Scintillation counting with solutions. Proc. Phys. Soc. (London) Letters to the Editor 78, 621–622 (1950)

    Google Scholar 

  6. H. Kallmann, M. Furst, Fluorescence of solutions bombarded with high energy radiation (energy transport in liquids). Phys. Rev. 79, 857–870 (1950)

    Article  ADS  Google Scholar 

  7. H. Kallmann, M. Furst, Fluorescence of solutions bombarded with high energy radiation (energy transport in liquids). Part II. Phys. Rev. 81, 853–864 (1951)

    Article  ADS  Google Scholar 

  8. H. Kallmann, M. Furst, High energy induced fluorescence in organic liquid solutions (energy transport in liquids). Part III. Phys. Rev. 85, 816–825 (1951)

    Google Scholar 

  9. G.T. Reynolds, Scintillation counting. Nucleonics 6, 488–489 (1950)

    Google Scholar 

  10. R.K. Swank, Recent advances in theory of scintillation phosphors. Nucleonics 12, 4–22 (1954)

    Google Scholar 

  11. ATLAS Technical design report, CERN (1999)

    Google Scholar 

  12. J.A. Nikkel et al., Liquefied noble gas (LNG) detectors for detection of nuclear matter. J. Instrum. 7, C03007 (2011)

    Google Scholar 

  13. M.G. Schorr, F.L. Torney, Solid non-crystalline scintillation phosphors. Proc. Phys. Soc. (London) Letters to the Editor 80, 474–475 (1950)

    Google Scholar 

  14. T.R. Martinez, S. Gundacker, E. Auffray, P. Lecoq, Towards a metamaterial approach for fast timing in PET: experimental proof-of-concept. Phys. Med. Biol. 12 (2019). https://doi.org/10.1088/1361-6560/ab18b3. (EPb ahead of print)

    Article  ADS  Google Scholar 

  15. P.A. Rodnyi, Physical Processes in Inorganic Scintillators (CRC Press, Boca Raton, 1997)

    Google Scholar 

  16. M. Korzhik, Physics of Scintillation in Oxide Crystals (BSU Press, Minsk, 2003)

    Google Scholar 

  17. P. Lecoq, A. Annenkov, A. Gektin, M. Korzhik, C. Pedrini, Inorganic Scintillators for Detector Systems (Springer, Berlin, 2006)

    Google Scholar 

  18. P. Lecoq, A. Gektin, M. Korzhik, Inorganic Scintillators for Detector Systems (Springer, Cham, 2016)

    Google Scholar 

  19. P. Rodnyi, P. Dorenbos, C.W.E. van Eijk, Energy loss in inorganic scintillators. Phys. Status Solidi B 187, 15–29 (1995)

    Article  ADS  Google Scholar 

  20. А. Lempicki, The physics of inorganic scintillators. J. Appl. Spectrosc. 62, 209–231 (1995)

    Article  Google Scholar 

  21. M. Korzhik, A. Gektin, Engineering of Scintillation Materials and Radiation Technologies (Springer, Cham, 2017)

    Book  Google Scholar 

  22. A. Lushchik, M. Kirm, C. Lushchik, Multiplication of anion and cation electronic excitations in luminescent wide-gap ionic crystals. Radiat. Meas. 24, 365–369 (1995); A. Vasil’ev, V. Kolobanov, I. Kuusmann, Ch. Lushchik, Multiplication of electron excitations in MgO crystals. Sov. Phys. Solid State 27, 1616–1619 (1985)

    Google Scholar 

  23. J. H. Hubber, Photon cross sections attenuation coefficients and energy absorption coefficients from 10keV to 100GeV, NSRDS-NBS29, S Department of Commerce, National Bureau of Standards (1969)

    Google Scholar 

  24. M. J. Berger, S. M. Seltzer, Tables of energy losses and ranges of electrons and positrons in: studies in penetration of charged particles in matter (Publication of NAS-NRC, 1964)

    Google Scholar 

  25. R. Kirkin, V. Mikhailin, A. Vasil’ev, Recombination of correlated electron-hole pairs with account of hot capture with emission of optical phonons. IEEE Trans. Nucl. Sci. 59, 2057–2064 (2012)

    Article  ADS  Google Scholar 

  26. C. Leroy, P.G. Rancoita, Principles of Radiation Interaction in Matter and Detection (Word Scientific Publishing Co Pte Ltd, Singapore, 2016)

    Book  Google Scholar 

  27. A. Barysevich et al., Radiation damage of heavy crystalline detector materials by 24 GeV protons. Nucl. Instrum. Methods Phys. Res. A 701, 231–234 (2013)

    Article  ADS  Google Scholar 

  28. E. Lamb Wellis Jr., Passage of uranium fission fragments through matter. Phys. Rev. 58, 696–702 (1940)

    Article  ADS  Google Scholar 

  29. N. Bohr, On the theory of the decrease of velocity of moving electrified particles on passing through matter. Philos. Mag. 25, 10–31 (1913)

    Article  Google Scholar 

  30. H.A. Bethe, Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie. Ann. Phys. 5, 325–400 (1930)

    Article  Google Scholar 

  31. F. Bloch, Bremsvermogen von Atomen mit mehreren Electronen. Z. Physic 81, 363–376 (1933)

    ADS  MATH  Google Scholar 

  32. G.F. Knoll, Radiation Detection and Measurement (John Wiley & Sons, New York, 2000)

    Google Scholar 

  33. D. Mazed, S. Mameri, R. Ciolini, Design parameters and technology optimization of 3He-filled proportional counters for thermal neutron detection and spectrometry applications. Radiat. Meas. 47, 577–587 (2012)

    Article  Google Scholar 

  34. Evaluated Nuclear Data File (ENDF), https://www-nds.iaea.org/exfor/endf.htm. Accessed Mar 2019

  35. P. Reeder, Neutron detection using GSO scintillator. Nucl. Instrum. Methods. Phys. Res. Sect. A 340, 371–378 (1994)

    Article  ADS  Google Scholar 

  36. M. Korzhik, K.T. Brinkmann, G. Dosovitskiy, et al., Compact and effective detector of the fast neutrons on a base of Ce doped Gd3Al2Ga3O12 scintillation crystal. IEEE Trans. Nucl. Sci. 66, 536–540 (2019)

    Article  ADS  Google Scholar 

  37. K. Hagiawara, et al., Prog. Theor. Exp. Phys. arXiv:1809.02664v1 [nucl-ex] (2015)

    Google Scholar 

  38. M. Korzhik, K.T. Brinkmann, G. Dosovitskiy, et al., Detection of neutrons in a wide energy range with crystalline Gd3Al2Ga3O12, Lu2SiO5 and LaBr3 doped with Ce scintillators. Nucl. Instrum. Methods Phys. Res. A 931, 88–91 (2019)

    Article  ADS  Google Scholar 

  39. H. Klein, F.D. Brooks, Scintillation Detectors for fast Neutrons, Proceedings of Science (FNDA, 2006), p. 097. https://doi.org/10.22323/1.025.0097

  40. A. Alireza et al, Observation of reactor antineutrinos with a rapidly-deployable surface-level detector, arXiv18.1202163v1 (2018)

    Google Scholar 

  41. C.E.R.N. The, Large Hadron Collider: Accelerator and Experiments, vol 1–2 (CERN, Geneva, 2009)

    Google Scholar 

  42. CMS Collaboration, Observation of a new bozon at a mass of 125 GeV with the CMS experiment, at the LHC. Phys. Lett. B 716, 30–61 (2012)

    Article  ADS  Google Scholar 

  43. A. Annenkov, M. Korzhik, P. Lecoq, Lead tungstate scintillation material. Nucl. Instrum. Meth. Phys. Res. Sect. A 490, 30–50 (2002)

    Article  ADS  Google Scholar 

  44. G. von Dardel et al., Mean life of the neutral. Phys. Lett. 4, 51–54 (1963)

    Article  ADS  Google Scholar 

  45. Y. Shao, A new timing model for calculating the intrinsic timing resolution of a scintillator detector. Phys. Med. Biol. 52, 1103–1117 (2007)

    Article  Google Scholar 

  46. A. Auffray, G. Dosovitskiy, A. Fedorov, et al., Irradiation effects on Gd3Al2Ga3O12 scintillators prospective for application in harsh irradiation environments. Radiat. Phys. Chem. 164, 108365 (2019)

    Article  Google Scholar 

  47. Technical Proposal for a MIP Timing Detector in the CMS experiment Phase 2 upgrade, Tech. Rep. CERN-LHCC-2017-027. LHCC-P-009, (CERN, Geneva Dec 2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Korzhik, M., Tamulaitis, G., Vasil’ev, A.N. (2020). Release of Ionizing Radiation Energy in Inorganic Scintillator. In: Physics of Fast Processes in Scintillators. Particle Acceleration and Detection. Springer, Cham. https://doi.org/10.1007/978-3-030-21966-6_1

Download citation

Publish with us

Policies and ethics