Skip to main content

Single-Photon Transitions of Atomic Particles

  • Chapter
  • First Online:
Atomic and Molecular Radiative Processes

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 108))

  • 676 Accesses

Abstract

Radiative transitions in atoms and atomic particles result from interaction between the radiation field and atomic electrons. Representing an atom as a system of electrons located in the Coulomb motionless center, we have that bound atomic states has a discrete character and bound energy states are described by certain quantum numbers. A weakness of interaction between an atom and radiation field follows from a small velocity of bound electrons compared to light speed. Therefore, parameters of radiative transitions in atoms may be determined within the framework of the perturbed theory of quantum mechanics. This approach exhibits that dipole transitions are the strongest one and allows one to analyze the character of atom spectroscopy which including the selection rule and the sum rules. Some applications of atom spectroscopy are based on a narrow width of spectral lines for transitions between discrete states of atomic particles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.G. Veselov, L.N. Labtzovskij, Theory of the Atom Structure of Electron Shells (Nauka, Moscow, 1986) (in Russian)

    Google Scholar 

  2. H. Haken, A.C. Wolf, The Physics of Atoms and Quanta (Springer, Berlin, 2000)

    Book  Google Scholar 

  3. J. Barrett, Atomic Structure and Periodicity (Wiley, Berlin, 2003)

    Google Scholar 

  4. B.H. Bransden, C.J. Joachain, Physics of Atoms and Molecules (Prentice Hall, Harlow, 2003)

    Google Scholar 

  5. H. Haken, H.C. Wolf, The Physics of Atoms and Quanta (Springer, Berlin, 2004)

    MATH  Google Scholar 

  6. C. Food, Atomic Physics (Oxford University Press, Oxford, 2004)

    Google Scholar 

  7. W. Demdroter, Atoms, Molecules and Photons (Springer, Berlin, 2006)

    Google Scholar 

  8. H.A. Bethe, Quantenmechanik der Ein- und Zweielectronenprobleme. Handbuch der Physik, vol. 24–1 (Springer, Berlin, 1933)

    Google Scholar 

  9. H.A. Bethe, E.E. Salpeter, Quantum Mechanics of One and Two-Electron Atoms (Springer, Berlin, 1957)

    Book  Google Scholar 

  10. L.D. Landau, E.M. Lifshitz, Quantum Mechanics (Pergamon Press, Oxford, 1965)

    MATH  Google Scholar 

  11. W. Pauli, Zs. Phys. 31, 765 (1925)

    Google Scholar 

  12. W. Pauli, Exclusion Principle and Quantum Mechanics (Editions du Griffon, Neuchatel, Switzerland, 1947)

    Google Scholar 

  13. I.G. Kaplan, The Pauli Exclusion Principle (Wiley, Chichester, 2017)

    MATH  Google Scholar 

  14. H.A. Bethe, Intermediate Quantum Mechanics (New York, Benjamin Inc., 1964)

    Google Scholar 

  15. B.M. Smirnov, Physics of Atoms and Ions (Springer NY, New York, 2003)

    Google Scholar 

  16. F. Hund, Linienspectren and Periodisches System der Elemente (Berlin, 1927)

    Google Scholar 

  17. S. Bashkin, J. Stoner, Atomic Energy Levels and Grotrian Diagrams, vol. 1–4 (Amsterdam, North Holland, 1975–1982)

    Google Scholar 

  18. A.A. Radzig, B.M. Smirnov, Reference Data on Atoms, Molecules and Ions (Springer, Berlin, 1985)

    Book  Google Scholar 

  19. B.M. Smirnov, Phys. Usp. 44, 221 (2001)

    Article  ADS  Google Scholar 

  20. G. Racah, Phys. Rev. 61, 186 (1942)

    Article  ADS  Google Scholar 

  21. G. Racah, Phys. Rev. 62, 438 (1942)

    Article  ADS  Google Scholar 

  22. N. Bohr, The Correspondence Principle (Elsevier, Amsterdam, 1976)

    Google Scholar 

  23. A.R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University Press, Princeton, 1957)

    Book  Google Scholar 

  24. D.A. Varshalovich, A.N. Moskalev, V.K. Khersonskii, Quantum Theory of Angular Momentum (World Scientific, Singapore, 1988)

    Book  Google Scholar 

  25. O. Laporte, W. Meggers, J. Opt. Soc. Am. 11, 459 (1925)

    Article  ADS  Google Scholar 

  26. J. Stark, Ann. Phys. 43, 965 (1914)

    Article  Google Scholar 

  27. P. Ehrenfest, Zs. Phys. 45, 455 (1927)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Krainov .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krainov, V., Smirnov, B.M. (2019). Single-Photon Transitions of Atomic Particles. In: Atomic and Molecular Radiative Processes. Springer Series on Atomic, Optical, and Plasma Physics, vol 108. Springer, Cham. https://doi.org/10.1007/978-3-030-21955-0_1

Download citation

Publish with us

Policies and ethics