Skip to main content

An Impact of Jamming Signal on the Energy Efficiency of ZigBee Network Elements

  • Conference paper

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1039))

Abstract

The paper presents evaluation of the energy efficiency of ZigBee network elements in the presence of disturbances caused by a jammer. The measurements were performed with the use of two Digi XBee-PRO S1 802.15.4 devices and Arduino boards configured for echo tests purposes. The CRJ4000 cell phone and WiFi ISM band handheld jammer was used as a jamming source. The influence of the radio power level of Xbee module during jamming conditions on the communication quality and the energy consumption was measured. Authors proposed the policy of switching the radio power level of Xbee modules in the presence of jamming signal.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rashid, B., Rehmani, M.H.: Applications of wireless sensor networks for urban areas: a survey. J. Netw. Comput. Appl. 60, 192–219 (2016)

    Article  Google Scholar 

  2. Gaj, P., Jasperneite, J., Felser, M.: Computer communication within industrial distributed environment-a survey. IEEE Trans. Ind. Inform. 9, 182–189 (2013)

    Article  Google Scholar 

  3. Mosorov, V., Biedron, S., Panskyi, T.: The dependence between the number of rounds and implemented nodes in LEACH routing protocol-based sensor networks. IAP-GOS 7, 60–63 (2017)

    Google Scholar 

  4. Feltrin, G., Popovic, N., Flouri, K., Pietrzak, P.: A wireless sensor network with enhanced power efficiency and embedded strain cycle identification for fatigue monitoring of railway bridges. J. Sens. (2016)

    Google Scholar 

  5. Czerwinski, D., Milosz, M.: An inexpensive environmental monitoring system with IoT agents. In: ITM Web of Conferences, vol. 15, p. 01001. EDP Sciences (2017)

    Google Scholar 

  6. Fan, X., Wei, W., Wozniak, M., Li, Y.: Low energy consumption and data redundancy approach of wireless sensor networks with Bigdata. Inf. Technol. Control. 47(3), 406–418 (2018)

    Google Scholar 

  7. Horvat, G., Sostaric, D., Zagar, D.: Response surface methodology based power consumption and RF propagation analysis and optimization on XBee WSN module. Telecommun. Syst. 59(4), 437–452 (2015)

    Article  Google Scholar 

  8. Horvat, G., Sostaric, D., Zagar, D.: Power consumption and RF propagation analysis on ZigBee XBee modules for ATPC. In: TSP, pp. 222–226 (2012)

    Google Scholar 

  9. Fedor, S., Collier, M.: On the problem of energy efficiency of multi-hop vs one-hop routing in wireless sensor networks. In: 21st International Conference on IEEE Advanced Information Networking and Applications Workshops, AINAW 2007, vol. 2, pp. 380–385 (2007)

    Google Scholar 

  10. Lavratti, F., et al.: A transmission power self-optimization technique for wireless sensor networks. ISRN Commun. Netw. (2012)

    Google Scholar 

  11. Luculescu, M.C., Zamfira, S.C., Cristea, L.: WiSeIn: wireless sensor network used for data acquisition from indoor locations. In: Visa, I. (ed.) The 11th IFToMM International Symposium on Science of Mechanisms and Machines. Mechanisms and Machine Science, vol. 18, pp. 391–399. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-01845-4_39

    Chapter  Google Scholar 

  12. Aurasopon, A.: Power saving approach based on time triggered architecture for wireless accelerometer system. CIGR J. Agric. Eng. Int. 20(3), 245–252 (2018)

    Google Scholar 

  13. Cao, X., Shila, D.M., Cheng, Y., Yang, Z., Zhou, Y., Chen, J.: Ghost-in-ZigBee: energy depletion attack on ZigBee-based wireless networks. IEEE Internet Things J. 3(5), 816–829 (2016)

    Article  Google Scholar 

  14. Digi, XBee/XBee-PRO S1 802.15.4 Modules, December 2018. https://www.digi.com/support/productdetail?pid=3257

  15. Ecer - cell mobile phone jammer company, Cell phone and Wifi jammer [CRJ4000] parameters, July 2016. http://www.ecer.com/products/cell_phone_and_wifi_jammer_crj4000-mpz234a62a-z1fcb0dd/showimage.html

  16. Fluke Networks, Air Magnet Spectrum XT analyser datasheet. http://airmagnet.flukenetworks.com/assets/datasheets/AirMagnet_SpectrumXT_Datasheet.pdf. Accessed Dec 2017

  17. TEM, UNI-T UT70A digital multimeter. https://www.tme.eu/gb/details/ut70a/portable-digital-multimeters/uni-t/. Accessed Dec 2018

  18. Digi, XBee PRO S1 documentation, January 2019. https://www.digi.com/resources/documentation/digidocs/pdfs/90000982.pdf

  19. Digi, XBee PRO S1 CSMA/CA documentation, January 2019. https://www.digi.com/resources/documentation/Digidocs/90001500/Reference/r_cmd_RN_xtend.htm

  20. Digi International, XBee-PRO PKG-R RS-232 RF Modem User Guide, January 2019. https://www.digi.com/resources/documentation/digidocs/pdfs/90000829.pdf

  21. Bouazzi, I., Bhar, J., Atri, M.: New CSMA/CA prioritisation based on fuzzy control mechanism. Int. J. Intell. Eng. Inform. 5(3), 253–266 (2017)

    Google Scholar 

  22. Al-Anbagi, I., Erol-Kantarci, M., Mouftah, H.T.: Priority-and delay-aware medium access for wireless sensor networks in the smart grid. IEEE Syst. J. 8(2), 608–618 (2014)

    Article  Google Scholar 

  23. Dariz, L., Malaguti, G., Ruggeri, M.: Performance analysis of IEEE 802.15. 4 real-time enhancement. In: 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE), pp. 1475–1480 (2014)

    Google Scholar 

  24. Amjad, M., Qureshi, H.K., Lestas, M., Mumtaz, S., Rodrigues, J.J.: Energy prediction based MAC layer optimization for harvesting enabled WSNs in smart cities. In: 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), pp. 1–6. IEEE, June 2018

    Google Scholar 

  25. Biswas, S., Roy, S.D., Chandra, A.: Cross-layer energy model for beacon-enabled 802.15.4 networks. J. Ambient. Intell. Hum. Comput., 1–16 (2018)

    Google Scholar 

  26. Chaari, L., Kamoun, L.: Performance analysis of IEEE 802.15. 4/Zigbee standard under real time constraints. Int. J. Comput. Netw. Commun. 3(5), 235 (2011)

    Article  Google Scholar 

  27. Lee, H.R., Park, J.H., Suh, Y.J.: Bursty-contention distribution for energy efficiency in large scale IEEE 802.15. 4 wireless sensor networks. Wirel. Pers. Commun. 84(3), 1663–1687 (2015)

    Article  Google Scholar 

  28. Musa, A., Baba, M.D., Mansor, H.M.A.H.: The design and implementation of IEEE 802.15.7 module with ns-2 simulator. In: 2014 International Conference on Computer, Communications, and Control Technology (I4CT), pp. 111–115 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariusz Czerwinski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Cite this paper

Czerwinski, D., Nowak, J., Przylucki, S. (2019). An Impact of Jamming Signal on the Energy Efficiency of ZigBee Network Elements. In: Gaj, P., Sawicki, M., Kwiecień, A. (eds) Computer Networks. CN 2019. Communications in Computer and Information Science, vol 1039. Springer, Cham. https://doi.org/10.1007/978-3-030-21952-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21952-9_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21951-2

  • Online ISBN: 978-3-030-21952-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics