Skip to main content

A System with Warm Standby

  • Conference paper
Computer Networks (CN 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1039))

Included in the following conference series:

Abstract

The mathematical model of the restorable system with warm reserve considered, in the case when all working and repair times are bounded by exponential random variable (upper and lower), and working and repair times can be dependent. The exponential upper bounds for the convergence rate of the distribution of this system. The bounds for the convergence rate of the availability factor are estimated.

Supported by RFBR (project No 17-01-00633 A).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Afanasyeva, L.G., Tkachenko, A.V.: On the convergence rate for queueing and reliability models described by regenerative processes. J. Math. Sci. 218(2), 119–36 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Asmussen, S.: Applied Probability and Queues, 2nd edn. Springer, New York (2003). https://doi.org/10.1007/b97236

    Book  MATH  Google Scholar 

  3. Gnedenko, B.V., Belyayev, Y.K., Solovyev, A.D.: Mathematical Methods of Reliability Theory. Academic Press, Cambridge (2014)

    MATH  Google Scholar 

  4. Gnedenko, B.V., Kovalenko, I.N.: Introduction to Queuing Theory. In: Mathematical Modeling, Birkhaeuser Boston, Boston (1989)

    Google Scholar 

  5. Griffeath, D.: A maximal coupling for Markov chains. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 31(2), 95–106 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  6. Doeblin, W.: Exposé de la théorie des chaînes simples constantes de Markov à un nombre fini d’états. Rev. Math. de l’Union Interbalkanique 2, 77–105 (1938)

    MATH  Google Scholar 

  7. Doob, J.L.: Stochastic Processes. Wiley, Hoboken (1953)

    MATH  Google Scholar 

  8. Kalimulina, E.Y.: Analysis of unreliable open queueing network with dynamic routing. In: Vishnevskiy, V.M., Samouylov, K.E., Kozyrev, D.V. (eds.) DCCN 2017. CCIS, vol. 700, pp. 355–367. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66836-9_30

    Chapter  Google Scholar 

  9. Kalimulina, E.Y.: Rate of convergence to stationary distribution for unreliable Jackson-type queueing network with dynamic routing. In: Vishnevskiy, V.M., Samouylov, K.E., Kozyrev, D.V. (eds.) DCCN 2016. CCIS, vol. 678, pp. 253–265. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-51917-3_23

    Chapter  Google Scholar 

  10. Kato, K.: Coupling Lemma and Its Application to The Security Analysis of Quantum Key Distribution. Tamagawa University Quantum ICT Research Institute Bulletin, vol. 4, no. 1, pp. 23–30 (2014)

    Google Scholar 

  11. Thorisson, H.: Coupling. In: Accardi, L., Heyde, C.C. (eds.) Probability Towards 2000, vol. 128. Springer, New York (2000). https://doi.org/10.1007/978-1-4612-2224-8_19

    Chapter  Google Scholar 

  12. Veretennikov, A., Butkovsky, O.A.: On asymptotics for Vaserstein coupling of Markov chains. Stoch. Process. Appl. 123(9), 3518–3541 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Veretennikov, A.Y., Zverkina, G.A.: Simple proof of Dynkin’s formula for single-server systems and polynomial convergence rates. Markov Process. Relat. Fields 20, 479–504 (2014)

    MathSciNet  MATH  Google Scholar 

  14. Zverkina, G.: On strong bounds of rate of convergence for regenerative processes. In: Vishnevskiy, V.M., Samouylov, K.E., Kozyrev, D.V. (eds.) DCCN 2016. CCIS, vol. 678, pp. 381–393. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-51917-3_34

    Chapter  Google Scholar 

  15. Zverkina G.: About some extended Erlang-Sevast’yanov queueing system and its convergence rate (English and Russian versions). https://arxiv.org/abs/1805.04915. Fundamentalnaya i Prikladnaya Matematika, 2018, No 22, issue 3 - in print

  16. Stoyan, D.: Qualitative Eigenschaften und Abschtzungen stochastischer Modelle. Berlin (1977)

    Google Scholar 

Download references

Acknowledgement

The author thanks E.Yu. Kalimulina, V. V. Kozlov and A.Yu. Veretennikov for valuable recommendations and help in the preparation of the article. The work is supported by RFBR (project No 17-01-00633 A). The reported study was funded by Presidium of RAS according to the research project by Program I.30.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Galina Zverkina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Cite this paper

Zverkina, G. (2019). A System with Warm Standby. In: Gaj, P., Sawicki, M., Kwiecień, A. (eds) Computer Networks. CN 2019. Communications in Computer and Information Science, vol 1039. Springer, Cham. https://doi.org/10.1007/978-3-030-21952-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21952-9_28

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21951-2

  • Online ISBN: 978-3-030-21952-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics