Skip to main content

Ventricle Surface Reconstruction from Cardiac MR Slices Using Deep Learning

  • Conference paper
  • First Online:
Book cover Functional Imaging and Modeling of the Heart (FIMH 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11504))

Abstract

Reconstructing 3D ventricular surfaces from 2D cardiac MR data is challenging due to the sparsity of the input data and the presence of interslice misalignment. It is usually formulated as a 3D mesh fitting problem often incorporating shape priors and smoothness regularization, which might affect accuracy when handling pathological cases. We propose to formulate the 3D reconstruction as a volumetric mapping problem followed by isosurfacing from dense volumetric data. Taking advantage of deep learning algorithms, which learn to predict each voxel label without explicitly defining the shapes, our method is capable of generating anatomically meaningful surfaces with great flexibility. The sparse 3D volumetric input can process contours with any orientations and thus can utilize information from multiple short- and long-axis views. In addition, our method can provide correction of motion artifacts. We have validated our method using a statistical shape model on reconstructing 3D shapes from both spatially consistent and misaligned input data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vukicevic, M., Mosadegh, B., Min, J., Little, S.: Cardiac 3D printing and its future directions. JACC Cardiovasc. Imaging 10, 171–184 (2017)

    Article  Google Scholar 

  2. Suinesiaputra, A., et al.: Statistical shape modeling of the left ventricle: myocardial infarct classification challenge. IEEE JBHI 22(2), 503–515 (2018)

    Google Scholar 

  3. Lehmann, H., et al.: Integrating viability information into a cardiac model for interventional guidance. In: Ayache, N., Delingette, H., Sermesant, M. (eds.) FIMH 2009. LNCS, vol. 5528, pp. 312–320. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01932-6_34

    Chapter  Google Scholar 

  4. Zacur, E., et al.: MRI-based heart and Torso personalization for computer modeling and simulation of cardiac electrophysiology. In: Cardoso, M.J., et al. (eds.) BIVPCS/POCUS -2017. LNCS, vol. 10549, pp. 61–70. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67552-7_8

    Chapter  Google Scholar 

  5. Arevalo, H., et al.: Arrhythmia risk stratification of patients after myocardial infarction using personalized heart models. Nat. Commun. 7, 11437 (2016)

    Article  Google Scholar 

  6. Deng, D., Zhang, J., Xia, L.: Three-dimensional mesh generation for human heart model. In: Li, K., Li, X., Ma, S., Irwin, G.W. (eds.) ICSEE/LSMS -2010. CCIS, vol. 98, pp. 157–162. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15859-9_22

    Chapter  Google Scholar 

  7. AHA Writing Group on Myocardial Segmentation and Registration for Cardiac Imaging: Manuel D. Cerqueira, et al. "Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association." Circulation 105(4), 539–542 (2002)

    Google Scholar 

  8. Villard, B., Zacur, E., Dall’Armellina, E., Grau, V.: Correction of slice misalignment in multi-breath-hold cardiac MRI scans. In: Mansi, T., McLeod, K., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds.) STACOM 2016. LNCS, vol. 10124, pp. 30–38. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52718-5_4

    Chapter  Google Scholar 

  9. Zou, M., Holloway, M., Carr, N., Ju, T.: Topology-constrained surface reconstruction from cross-sections. ACM Trans. Graph. 34, 128 (2015)

    Article  Google Scholar 

  10. Young, A., et al.: Left ventricular mass and volume: fast calculation with guide-point modelling on MR images. Radiology 2, 597–602 (2000)

    Article  Google Scholar 

  11. Medrano-Gracia, P., et al.: Large scale left ventricular shape atlas using automated model fitting to contours. In: Ourselin, S., Rueckert, D., Smith, N. (eds.) FIMH 2013. LNCS, vol. 7945, pp. 433–441. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38899-6_51

    Chapter  Google Scholar 

  12. Villard, B., Grau, V., Zacur, E.: Surface mesh reconstruction from cardiac MRI contours. J. Imaging 4(1), 16 (2018)

    Article  Google Scholar 

  13. Lamata, P., et al.: An accurate, fast and robust method to generate patient-specific cubic Hermite meshes. Med. Image Anal. 15, 801–813 (2011)

    Article  Google Scholar 

  14. De Marvao, A., et al.: Population-based studies of myocardial hypertrophy: high resolution cardiovascular magnetic resonance atlases improve statistical power. J. Cardiovasc. Magn. Reson. 16, 16 (2015)

    Article  Google Scholar 

  15. Zhang, X., et al.: Atlas-based quantification of cardiac remodeling due to myocardial infarction. PloS One 9(10), e110243 (2014)

    Article  Google Scholar 

  16. Alba, X., et al.: An algorithm for the segmentation of highly abnormal hearts using a generic statistical shape model. IEEE TMI 35(3), 845859 (2016)

    MathSciNet  Google Scholar 

  17. Zhang, C., et al.: Understanding deep learning requires rethinking generalization. arXiv preprint arXiv:1611.03530 (2016)

  18. Oktay, O., et al.: Anatomically constrained neural networks (ACNNs): application to cardiac image enhancement and segmentation. IEEE TMI 37(2), 384–395 (2018)

    Google Scholar 

  19. Duan, J., et al.: Automatic 3D bi-ventricular segmentation of cardiac images by a shape-refined multi-task deep learning approach. IEEE TMI (2019)

    Google Scholar 

  20. McLeish, K., Hill, D.L.G., Atkinson, D., Blackall, J.M., Razavi, R.: A study of the motion and deformation of the heart due to respiration. IEEE TMI 21(9), 1142–1150 (2002)

    Google Scholar 

  21. Shechter, G., Ozturk, C., Resar, J.R., McVeigh, E.R.: Respiratory motion of the heart from free breathing coronary angiograms. IEEE TMI 23, 1046–1056 (2004)

    Google Scholar 

  22. Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 417–424. ACM Press/Addison-Wesley Publishing Co. (2000)

    Google Scholar 

  23. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: Learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  24. Bai, W., et al.: A bi-ventricular cardiac atlas built from 1000+ high resolution MR images of healthy subjects and an analysis of shape and motion. Med. Image Anal. 26, 133–145 (2015)

    Article  Google Scholar 

  25. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 4th 3DV, pp. 565–571 (2016)

    Google Scholar 

  26. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. In: ACM Siggraph Computer Graphics, vol. 21, no. 4, pp. 163–169. ACM (1987)

    Article  Google Scholar 

Download references

Acknowledgments

We thank BHF Project Grant No. PG/16/75/32383 “Improving risk stratification in HCM through a computational anatomical analysis of ventricular remodelling” for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, H., Zacur, E., Schneider, J.E., Grau, V. (2019). Ventricle Surface Reconstruction from Cardiac MR Slices Using Deep Learning. In: Coudière, Y., Ozenne, V., Vigmond, E., Zemzemi, N. (eds) Functional Imaging and Modeling of the Heart. FIMH 2019. Lecture Notes in Computer Science(), vol 11504. Springer, Cham. https://doi.org/10.1007/978-3-030-21949-9_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21949-9_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21948-2

  • Online ISBN: 978-3-030-21949-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics