Skip to main content

Deep Learning Formulation of ECGI for Data-Driven Integration of Spatiotemporal Correlations and Imaging Information

  • Conference paper
  • First Online:
Functional Imaging and Modeling of the Heart (FIMH 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11504))

Abstract

The challenge of non-invasive Electrocardiographic Imaging (ECGI) is to re-create the electrical activity of the heart using body surface potentials. Specifically, there are numerical difficulties due to the ill-posed nature of the problem. We propose a novel method based on Conditional Variational Autoencoders using Deep generative Neural Networks to overcome this challenge. By conditioning the electrical activity on heart shape and electrical potentials, our model is able to generate activation maps with good accuracy on simulated data (mean square error, MSE = 0.095). This method differs from other formulations because it naturally takes into account spatio-temporal correlations as well as the imaging substrate through convolutions and conditioning. We believe these features can help improving ECGI results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.ecg-imaging.org.

  2. 2.

    https://keras.io/.

References

  1. Cedilnik, N., et al.: Fast personalized electrophysiological models from CT images for ventricular tachycardia ablation planning. EP-Europace 20, November 2018

    Google Scholar 

  2. Chamorro-Servent, J., Dubois, R., Potse, M., Coudière, Y.: Improving the spatial solution of electrocardiographic imaging: a new regularization parameter choice technique for the tikhonov method. In: Pop, M., Wright, G.A. (eds.) FIMH 2017. LNCS, vol. 10263, pp. 289–300. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59448-4_28

    Chapter  Google Scholar 

  3. Chávez, C.E., Zemzemi, N., Coudière, Y., Alonso-Atienza, F., Álvarez, D.: Inverse problem of electrocardiography: estimating the location of cardiac Ischemia in a 3D realistic geometry. In: van Assen, H., Bovendeerd, P., Delhaas, T. (eds.) FIMH 2015. LNCS, vol. 9126, pp. 393–401. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20309-6_45

    Chapter  Google Scholar 

  4. Ghimire, S., Dhamala, J., Gyawali, P.K., Sapp, J.L., Horacek, M., Wang, L.: Generative modeling and inverse imaging of cardiac transmembrane potential. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 508–516. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_57

    Chapter  Google Scholar 

  5. Giffard-Roisin, S., et al.: Transfer learning from simulations on a reference anatomy for ECGI in personalised cardiac resynchronization therapy. IEEE Trans. Biomed. Eng. 20 (2018)

    Google Scholar 

  6. Giffard-Roisin, S., et al.: Non-invasive personalisation of a cardiac electrophysiology model from body surface potential mapping. IEEE Trans. Biomed. Eng. 64(9), 2206–2218 (2017)

    Article  Google Scholar 

  7. Hammernik, K., et al.: Learning a variational network for reconstruction of accelerated MRI data. Magn. Reson. Med. 79(6), 3055–3071 (2018)

    Article  Google Scholar 

  8. Higgins, I., et al.: \(\beta \)-vae: Learning basic visual concepts with a constrained variational framework. In: International Conference on Learning Representations (2017)

    Google Scholar 

  9. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: Proceedings of the International Conference on Learning Representations (ICLR) (2014)

    Google Scholar 

  10. Kingma, D.P., Mohamed, S., Jimenez Rezende, D., Welling, M.: Semi-supervised learning with deep generative models. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 27, pp. 3581–3589. Curran Associates, Inc. (2014)

    Google Scholar 

  11. Ramanathan, C., Rudy, Y.: Electrocardiographic imaging: effect of torso inhomogeneities on noninvasive reconstruction of epicardial potentials, electrograms, and isochrones. J. Cardiovasc. Electrophysiol. 12, 241–252 (2001)

    Article  Google Scholar 

  12. Sermesant, M., Coudière, Y., Moreau-Villéger, V., Rhode, K.S., Hill, D.L.G., Razavi, R.S.: A fast-marching approach to cardiac electrophysiology simulation for XMR interventional imaging. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 607–615. Springer, Heidelberg (2005). https://doi.org/10.1007/11566489_75

    Chapter  Google Scholar 

  13. Zemzemi, N., et al.: Effect of the torso conductivity heterogeneities on the ECGI inverse problem solution. In: Computing in Cardiology, Nice, France, September 2015

    Google Scholar 

Download references

Acknowledgements

The research leading to these results has received European funding from the ERC starting grant ECSTATIC (715093) and French funding from the National Research Agency grant IHU LIRYC (ANR-10-IAHU-04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tania Bacoyannis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bacoyannis, T., Krebs, J., Cedilnik, N., Cochet, H., Sermesant, M. (2019). Deep Learning Formulation of ECGI for Data-Driven Integration of Spatiotemporal Correlations and Imaging Information. In: Coudière, Y., Ozenne, V., Vigmond, E., Zemzemi, N. (eds) Functional Imaging and Modeling of the Heart. FIMH 2019. Lecture Notes in Computer Science(), vol 11504. Springer, Cham. https://doi.org/10.1007/978-3-030-21949-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21949-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21948-2

  • Online ISBN: 978-3-030-21949-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics