Skip to main content

Fuzzy Real-Time Multi-objective Optimization of a Prosthesis Test Robot Control System

  • Chapter
  • First Online:
Advanced Control Techniques in Complex Engineering Systems: Theory and Applications

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 203))

Abstract

This paper investigates the fuzzy real-time multi-objective optimization of a combined test robot/transfemoral prosthesis system with three degrees of freedom. Impedance control parameters are optimized with respect to the two objectives of ground force and vertical hip position tracking. Control parameters are first optimized off-line with an evolutionary algorithm at various values of walking speed, surface friction, and surface stiffness. These control parameters comprise a gait library of Pareto-optimal solutions for various walking scenarios. The user-preferred Pareto point for each walking scenario can be selected either by expert decision makers or by using an automated selection mechanism, such as the point that is the minimum distance to the ideal point. Then, given a walking scenario that has not yet been optimized, a fuzzy logic system is used to interpolate in real time among control parameters. This approach enables automated real-time multi-objective optimization. Simulation results confirm the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meng, W., Liu, Q., Zhou, Z., Ai, Q., Sheng, B., Xie, S.: Recent development of mechanisms and control strategies for robot-assisted lower limb rehabilitation. Mechatronics 31, 132–145 (2015)

    Article  Google Scholar 

  2. Flynn, L., Geeroms, J., Jimenez-Fabian, R., Vanderborght, B., Vitiello, N., Lefeber, D.: Ankle-knee prosthesis with active ankle and energy transfer: development of the CYBERLEGs Alpha-Prosthesis. Robot. Auton. Syst. 73, 4–15 (2015)

    Article  Google Scholar 

  3. Hemami, H., Dariush, B.: Control of constraint forces and trajectories in a rich sensory and actuation environment. Math. Biosci. 228, 171–184 (2010)

    Article  MathSciNet  Google Scholar 

  4. Bevilacqua, V., Dotoli, M., Foglia, M.M., Acciani, M., Tattoli, G., Valori, M.: Artificial neural networks for feedback control of human elbow hydraulic prosthesis. Neurocomputing 137, 3–11 (2014)

    Article  Google Scholar 

  5. Zheng, H., Shen, X.: Design and control of a pneumatically actuated transtibial prosthesis. J. Bionic Eng. 12, 217–226 (2015)

    Article  Google Scholar 

  6. Au, S., Berniker, M., Herr, H.: Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits. Neural Netw. 21, 654–666 (2008)

    Article  Google Scholar 

  7. Oskoei, M.A., Hu, H.: Myoelectric control systems—a survey. Biomed. Signal Process. 2, 275–294 (2007)

    Article  Google Scholar 

  8. Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms, vol. 16. Wiley (2001)

    Google Scholar 

  9. Simon, D.: Evolutionary Optimization Algorithms: Biologically Inspired and Population-Based Approaches to Computer Intelligence. Wiley (2013)

    Google Scholar 

  10. Thiele, L., Miettinen, K., Korhonen, P., Molina, J.: A preference-based evolutionary algorithm for multi-objective optimization. Evol. Comput. 17(3), 411–436 (2009)

    Article  Google Scholar 

  11. Thomas, G., Wilmot, T., Szatmary, S., Simon, D., Smith, W.: Evolutionary optimization of artificial neural networks for prosthetic knee control. In: Igelnik, B., et al. (eds.) Efficiency and Scalability Methods for Computational Intellect, Chapter 7, pp. 142–161 (2013)

    Google Scholar 

  12. Khushaba, R.N., Al-Jumaily, A., Al-Ani, A.: Evolutionary fuzzy discriminant analysis feature projection technique in myoelectric control. Pattern Recognit. Lett. 30, 699–707 (2009)

    Article  Google Scholar 

  13. Zadeh, L.A.: Fuzzy sets. Inform. Control 8, 338–353 (1965)

    Article  Google Scholar 

  14. Amin, A.T.M., Rahim, A.H.A., Low, C.Y.: Adaptive controller algorithm for 2-DOF humanoid arm. Procedia Technol. 15, 765–774 (2014)

    Article  Google Scholar 

  15. Popovic, D., Ogustoreli, M.N., Stein, R.B.: Optimal control for an above-knee prosthesis with two degrees of freedom. J. Biomech. 28(1), 89–98 (1995)

    Article  Google Scholar 

  16. Simon, S.R.: Quantification of human motion: gait analysis—benefits and limitations to its application to clinical problems. J. Biomech. 37, 1869–1880 (2004)

    Article  Google Scholar 

  17. Wang, L., Hu, W., Tan, T.: Recent developments in human motion analysis. Pattern Recognit. 36, 585–601 (2003)

    Article  Google Scholar 

  18. Zhou, H., Hu, H.: Human motion tracking for rehabilitation—a survey. Biomed. Signal Process. 3, 1–18 (2008)

    Article  Google Scholar 

  19. Davis, R., Richter, H., Simon, D., van den Bogert, A.: Evolutionary ground reaction force optimisation of a prosthesis leg testing robot. In: American Control Conference (ACC). IEEE, Portland, Oregon, USA, 4–6 June 2014 (2014)

    Google Scholar 

  20. Khalaf, P., Richter, H., van den Bogert, A.J., Simon, D.: Multi-objective optimization of impedance parameters in a prosthesis test robot. In: Proceedings of ASME Dynamic Systems and Control Conference, Columbus, Ohio, USA, 28–30 October 2015 (2015)

    Google Scholar 

  21. Richter, H., Simon, D.: Robust tracking control of the prosthesis test robot. J. Dyn. Syst. T ASME 136(3), 031011 (2014)

    Google Scholar 

  22. Richter, H., Simon, D., Smith, W., Samorezov, S.: Dynamic modeling, parameter estimation and control of a leg prosthesis test robot. Appl. Math. Model. 39, 559–573 (2015)

    Article  MathSciNet  Google Scholar 

  23. Felt, W., Selinger, J., Donelan, J., Remy, C.: Body-in-the-loop: optimizing device parameters using measures of instantaneous energetic cost. PLoS ONE 10(8), e0135342 (2015)

    Article  Google Scholar 

  24. Richter, H., Hui, X., van den Bogert, A., Simon, D.: Semiactive virtual control of a hydraulic prosthetic knee. In: IEEE Conference on Control Applications, Buenos Aires, Argentina, 19–22 September 2016 (2016)

    Google Scholar 

  25. Ries, A., Novacheck, T., Schwartz, M.: The efficacy of ankle-foot orthoses on improving the gait of children with diplegic cerebral palsy. Mult. Outcome Anal. Phys. Med. Rehabil. 7(9), 922–929 (2015)

    Google Scholar 

  26. Khademi, G., Mohammadi, H., Richter, H., Simon, D.: Optimal mixed tracking/impedance control with application to transfemoral prostheses with energy regeneration. IEEE Trans. Biomed. Eng. 65(4), 894–910 (2018)

    Article  Google Scholar 

  27. Kondratenko, Y., Khademi, G., Azimi, V., Ebeigbe, D., Abdelhady, M., Fakoorian, S.A., Barto, T., Roshanineshat, A.Y., Atamanyuk, I., Simon, D.: Robotics and Prosthetics at Cleveland State University: modern information, communication, and modeling technologies. In: Ginige, A., et al. (eds.) Information and Communication Technologies in Education, Research, and Industrial Applications, ICTERI 2016. Communications in Computer and Information Science, vol. 783, pp. 133–155. Springer, Cham (2017)

    Google Scholar 

  28. Hansen, H., Childress, D.S., Miff, S.C., Gard, S.A., Mesplay, K.P.: The human ankle during walking: implications for design of biomimetic ankle prosthesis. J. Biomech. 37, 1467–1474 (2004)

    Article  Google Scholar 

  29. Fakoorian, S., Azimi, V., Moosavi, M., Richter, H., Simon, D.: Ground reaction force estimation in prosthetic legs with nonlinear Kalman filtering methods. ASME J. Dyn. Syst. Meas. Control 139(11), DS-16-1583 (2017)

    Article  Google Scholar 

  30. Azimi, V., Shu, T., Zhao, H., Ambrose, E., Ames, A., Simon, D.: Robust control of a powered transfemoral prosthesis device with experimental verification. In: IEEE American Control Conference (ACC), Seattle, WA, USA, 24–26 May 2017 (2017)

    Google Scholar 

  31. Khalaf, P., Warner, H., Hardin, E., Richter, H., Simon, D.: Development and experimental validation of an energy regenerative prosthetic knee controller and prototype. In: ASME Dynamics Systems and Control Conference, Atlanta, Georgia, USA, 30 September–3 October 2018 (2018)

    Google Scholar 

  32. Nolan, L., Wit, A., Dudziñski, K., Lees, A., Lake, M., Wychowañski, M.: Adjustments in gait symmetry with walking speed in trans-femoral and trans-tibial amputees. Gait Posture 17(2), 142–151 (2003)

    Article  Google Scholar 

  33. Tura, A., Raggi, M., Rocchi, L., Cutti, A.G., Chiari, L.: Gait symmetry and regularity in transfemoral amputees assessed by trunk accelerations. J. Neuroeng. Rehabil. 7(1), 4 (2010)

    Article  Google Scholar 

  34. Moore, J., Hnat, S., van den Bogert, A.: An elaborate data set on human gait and the effect of mechanical perturbations. PeerJ 3, e918 (2015)

    Article  Google Scholar 

  35. Basak, A., Pal, S., Das, S., Abraham, A., Snasel, V.: A modified invasive weed optimization algorithm for time-modulated linear antenna array synthesis. In: IEEE Congress on Evolutionary Computation (CEC), Barcelona, Spain, 18–23 July 2010 (2010)

    Google Scholar 

  36. Jafari, S., Khalaf, P., Montazeri-Gh, M.: Multi-objective meta heuristic optimization algorithm with multi criteria decision making strategy for aero-engine controller design. Int. J. Aerosp. Sci. 3(1), 6–17 (2014)

    Google Scholar 

  37. Teodorovic, D., Pavkovich, G.: The fuzzy set theory approach to the vehicle routing problem when demand at nodes is uncertain. Fuzzy Set Syst. 82, 307–317 (1996)

    Article  MathSciNet  Google Scholar 

  38. Werners, B., Kondratenko, Y.: Alternative fuzzy approaches for efficiently solving the capacitated vehicle routing problem in conditions of uncertain demands. In: Berger-Vachon, C., et al. (eds.) Complex Systems: Solutions and Challenges in Economics, Management and Engineering, Studies in Systems, Decision and Control, vol. 125, pp. 521–543. Springer, Berlin, Heidelberg (2018)

    Google Scholar 

  39. Kondratenko, Y.P., Encheva, S.B., Sidenko, E.V.: Synthesis of intelligent decision support systems for transport logistic. In: 6th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), Prague, Czech Republic, 15–17 September 2011 (2011)

    Google Scholar 

  40. Kondratenko, Y.P., Al Zubi, E.Y.M.: The optimisation approach for increasing efficiency of digital fuzzy controllers. In: Annals of DAAAM and Proceedings, Vienna, Austria, January 2009 (2009)

    Google Scholar 

  41. Mamdani, E.H.: Application of fuzzy algorithm for control of a simple dynamic plant. Proc. Inst. Electr. Eng. 121(12), 1585–1588 (1974)

    Article  Google Scholar 

  42. Simon, D.: Training fuzzy systems with the extended Kalman filter. Fuzzy Set Syst. 132, 189–199 (2002)

    Article  MathSciNet  Google Scholar 

  43. Kondratenko, Y., Simon, D.: Structural and parametric optimization of the fuzzy control and decision making systems. In: Zadeh, L.A., et al. (eds.) Resent Development and New Direction in Soft Computing Foundations and Applications. Studies in Fuzziness and Soft Computing, vol. 361, pp. 273–289. Springer, Cham (2018)

    Google Scholar 

  44. Kuntsevich, V.M., Gubarev, V.F., Kondratenko, Y.P., Lebedev, D.V., Lysenko, V.P. (eds.): Control Systems: Theory and Applications, Series in Automation, Control and Robotics. River Publishers, Gistrup, Delft (2018)

    Google Scholar 

  45. Sinha, A., Korhonen, P., Wallenius, J., Deb, K.: An interactive evolutionary multi-objective optimization algorithm with a limited number of decision maker calls. Eur. J. Oper. Res. 233(3), 674–688 (2014)

    Article  MathSciNet  Google Scholar 

  46. Fleiss, J.L., Levin, B., Paik, M.C.: Statistical Methods for Rates and Proportions. Wiley (2013)

    Google Scholar 

  47. Kaufmann, A., Gupta, M.: Introduction to Fuzzy Arithmetic: Theory and Applications. Van Nostrand Reinhold Company, New York (1985)

    MATH  Google Scholar 

  48. Kondratenko, Y.P., Kondratenko, N.Y.: Soft computing analytic models for increasing efficiency of fuzzy information processing in decision support systems. In: Hudson, R. (ed.) Decision Making: Processes, Behavioral Influences and Role in Business Management, pp. 41–78. Nova Science Publishers, New York (2015)

    Google Scholar 

  49. Kondratenko, Y., Kondratenko, V.: Soft computing algorithm for arithmetic multiplication of fuzzy sets based on universal analytic models. In: Ermolayev, V., et al. (eds.) 10th International Conference on Information and Communication Technologies in Education, Research, and Industrial Applications, ICTERI 2014, pp. 49–77. Springer, Cham (2014)

    Chapter  Google Scholar 

  50. Piegat, A.: Fuzzy Modeling and Control, vol. 69. Physica (2013)

    Google Scholar 

  51. Simon, D.: Sum normal optimization of fuzzy membership functions. Int. J. Uncertain. Fuzz. 10, 363–384 (2002)

    Article  MathSciNet  Google Scholar 

  52. Kondratenko, Y.P., Klymenko, L.P., Al Zu’bi, E.Y.M.: Structural optimization of fuzzy systems’ rules base and aggregation models. Kybernetes 42(5), 831–843 (2013)

    Article  Google Scholar 

  53. Pedrycz, W., Li, K., Reformat, M.: Evolutionary reduction of fuzzy rule-based models. In: Tamir, D., et al. (eds.) Fifty Years of Fuzzy Logic and Its Applications, pp. 459–481. Springer, Cham (2015)

    Chapter  Google Scholar 

  54. Simon, D.: Design and rule base reduction of a fuzzy filter for the estimation of motor currents. Int. J. Approx. Reason. 25, 145–167 (2000)

    Article  Google Scholar 

  55. Kondratenko, Y.P., Altameem, T.A., Al Zubi, E.Y.M.: The optimisation of digital controllers for fuzzy systems design. Adv. Model. Anal. A47, 19–29 (2010)

    Google Scholar 

  56. Lodwick, W.A., Kacprzyk, J. (eds.): Fuzzy Optimization: Resent Advances and Applications, vol. 254. Springer, Heidelberg (2010)

    Google Scholar 

  57. Merigo, J.M., Gil-Lafuente, A.M., Yager, R.R.: An overview of fuzzy research with bibliometric indicators. Appl. Soft Comput. 27, 420–433 (2015)

    Article  Google Scholar 

  58. Simon, D.: H∞ estimation for fuzzy membership function optimization. Int. J. Approx. Reason. 40, 224–242 (2005)

    Article  MathSciNet  Google Scholar 

  59. Jamshidi, M., Kreinovich, V., Kacprzyk, J. (eds.): Advance trends in soft computing. In: Proceedings WCSC. Springer, Heidelberg (2013)

    Google Scholar 

  60. Tamir, D.E., Rishe, N.D., Kandel, A. (eds.): Fifty Years of Fuzzy Logic and Its Applications, vol. 326. Springer, Cham (2015)

    MATH  Google Scholar 

  61. Zadeh, L.A., Abbasov, A.M., Yager, R.R., Shahbazova, S.N., Reformat, M.Z. (eds.): Recent Developments and New Directions in Soft Computing, vol. 317. Springer, Berlin (2014)

    MATH  Google Scholar 

  62. Kuntsevich, V.M.: Control Under Uncertainty: Guaranteed Results in Control and Identification Problems. Naukova Dumka, Kyiv (2006) (in Russian)

    Google Scholar 

  63. Solesvik, M., Kondratenko, Y., Kondratenko, G., Sidenko, I., Kharchenko, V., Boyarchuk, A.: Fuzzy decision support systems in marine practice. In: IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Naples, Italy, 9–12 July 2017 (2017)

    Google Scholar 

Download references

Acknowledgements

The authors thank the Fulbright Scholar Program (USA) for supporting Prof. Y. P. Kondratenko with a Fulbright scholarship and for making it possible for this team to conduct research together in the USA. This research was partially supported by National Science Foundation Grant 1344954.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuriy P. Kondratenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kondratenko, Y.P., Khalaf, P., Richter, H., Simon, D. (2019). Fuzzy Real-Time Multi-objective Optimization of a Prosthesis Test Robot Control System. In: Kondratenko, Y., Chikrii, A., Gubarev, V., Kacprzyk, J. (eds) Advanced Control Techniques in Complex Engineering Systems: Theory and Applications. Studies in Systems, Decision and Control, vol 203. Springer, Cham. https://doi.org/10.1007/978-3-030-21927-7_8

Download citation

Publish with us

Policies and ethics