Skip to main content

Improved Post-crack Energy Absorption Capability of Cementitious Composites Reinforced with CNTs and PPs

  • Conference paper
  • First Online:
Book cover Proceedings of the Second International Conference on Theoretical, Applied and Experimental Mechanics (ICTAEM 2019)

Part of the book series: Structural Integrity ((STIN,volume 8))

  • 947 Accesses

Abstract

In this study a thorough investigation of the pre-peak and post-crack mechanical behavior of cement mortars reinforced with carbon nanotubes and polypropylene microfibers, took place. Flexural strength, Young’s modulus, energy absorption capability and energy based dimensionless indices (toughness indices) were investigated. Prismatic specimens of neat mortar and mortars reinforced with 0.1 vol.% CNTs and 1.0 vol.% PPs were subjected to a three point close loop bending test. Combined networks of CNTs and PPs also incorporated in mortar matrix in order to investigate the synergistic effect of hybrid reinforcement on the mechanical properties of mortar composites in comparison to the singly-reinforced mortars. The experimental results showed an exceptional multi scale mechanical behavior of mortars as reflected from the load-deflection curves. Cement-based composites using carbon nanotubes or ladder scale reinforcement of CNTs and PPs are characterized by 1.9 times higher flexural strength and stiffness and 50% increased flexural toughness over the mortars reinforced with micro scale fibers alone. The post-crack energy absorption capability of multiscale reinforced mortars after the formation of the “first crack”, is also outstandingly improved as indicated by the increases of the toughness indices I5, I10, I20.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brandt, A.M.: Fibre reinforced cement-based (FRC) composites after over 40 years of development in building and civil engineering. Compos. Struct. 86, 3–9 (2008)

    Article  Google Scholar 

  2. Lawler, J.S., Zampini, D., Shah, S.P.: Permeability of cracked hybrid fiber reinforced mortar under load. ACI Mater. J. 99(4), 379–385 (2002)

    Google Scholar 

  3. Gdoutos, E.E., Konsta-Gdoutos, M.S., Danoglidis, P.A.: Portland cement mortar nanocomposites at low carbon nanotube and carbon nanofiber content: a fracture mechanics experimental study. Cement Concr. Compos. 70, 110–118 (2016)

    Article  Google Scholar 

  4. Danoglidis, P.A., Konsta-Gdoutos, M.S., Gdoutos, E.E., Shah, S.P.: Strength, energy absorption capability and self-sensing properties of multifunctional carbon nanotube reinforced mortars. Constr. Build. Mater. 120, 265–274 (2016)

    Article  Google Scholar 

  5. Shah, S.P., Konsta-Gdoutos, M.S., Metaxa, Z.S.: Highly dispersed carbon nanotube reinforced cement based materials. United States Patent US9, 365, 456 (B2), 2016–06-14

    Google Scholar 

  6. American Concrete Institute: Report on Fiber Reinforced Concrete, ACI 544.1R-96 (1996)

    Google Scholar 

  7. Naaman, A.E., Shah, S.P., Throne, J.L.: Some developments in polypropylene fibers for concrete. ACI Special Publication 81, 375–396 (1984)

    Google Scholar 

Download references

Acknowledgements

The authors would like to kindly acknowledge the financial support from the Academy of Athens under the Research Funding Program “Improving structural performance and monitoring of damage in nanomodified concrete composites using carbon nanotubes and carbon nanofibers” (200/877).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panagiotis A. Danoglidis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Danoglidis, P.A., Konsta-Gdoutos, M.S., Gdoutos, E.E. (2019). Improved Post-crack Energy Absorption Capability of Cementitious Composites Reinforced with CNTs and PPs. In: Gdoutos, E. (eds) Proceedings of the Second International Conference on Theoretical, Applied and Experimental Mechanics. ICTAEM 2019. Structural Integrity, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-030-21894-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21894-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21893-5

  • Online ISBN: 978-3-030-21894-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics