The Lower Cretaceous Chouf Sandstone of Lebanon: A Regional Reservoir Level in the Levant?

  • Gabor TariEmail author
  • Chloe Asmar
  • David Schneider
  • Fadi H. Nader
  • Bernhard Grasemann
  • Jonathan Church
  • Andras Zamolyi
  • Mohammad Fallah
  • Harald Bauer
  • Georg Hatzenbichler
Part of the Regional Geology Reviews book series (RGR)


The lowermost unit of the Cretaceous succession onshore Lebanon is a widespread prominent sandstone formation traditionally known as the “Grès de Base”. The formation commonly consists of sandstones with some claystones, shales, lignites and locally volcanic rocks. Based on outcrop samples taken in the central and northern parts of Mount Lebanon the petrographical composition of the typical Chouf Sandstone is dominated by monocrystalline quartz (85–95%) indicating a well-sorted sandstone. Sedimentological observations suggest that the Chouf Formation deposited in fluvial, coastal plain and deltaic environments. The Barremian Chouf Sandstone is variable in thickness, ranging from a few metres to more than 700 m. Some abrupt lateral isopach variations are interpreted to be the result of deposition in individual extensional mini-basins located in a much larger overall basin extending into neighbouring Syria, Jordan and Israel/Palestine. Due to the lack of subsurface information, the isopach values were estimated from remote sensing observations of the Chouf outcrop geometries in NW Lebanon. Assuming a syn-rift origin for this formation, the thickness measurements were interpreted in the context of numerous half-grabens with the master normal faults trending WNW-ESE. The petrography of the Chouf Sandstone exposed at the surface suggests a potentially moderate to good reservoir in the subsurface as well. U–Pb detrital zircon geochronology of eight Chouf rock samples collected in NW Lebanon confirms this interpretation in agreement with earlier findings on age equivalent sandstones, some 400 km to the south. The good reservoir potential of these regional Neocomian to Barremian sandstones is mostly due to their recycled nature from quartz-rich Cambrian-Ordovician sandstones. Age-equivalent sandstones are proven reservoirs in the broader region, therefore the Chouf play could be a viable petroleum exploration target in both offshore and onshore Lebanon.



We appreciate the helpful and constructive comments by two anonymous reviewers. We are thankful to Sami Khomsi and Francois Roure for their invitation to contribute to this Special Issue of Arabian Journal of Geosciences. Conversations about the geology of Lebanon and Syria with Chris Walley, Ramadan Ghalayini, Nicolas Hawie, Don Rusk and Barry Wood were very helpful. The U–Pb detrital zircon data from the intra-Chouf tuffit layer was provided by Mihai Ducea. We acknowledge the thin-section descriptions by Roman Sauer, Szabolcs Harangi and Sandor Jozsa. Most of the figures in this paper were drafted by Peter Pernegr.


  1. Abdel-Rahman AM (2002) Mesozoic volcanism in the Middle East: geochemical, isotopic and petro-genetic evolution of extension-related alkali basalts from central Lebanon. Geol Magaz 139:621–640CrossRefGoogle Scholar
  2. Alsharhan AS, Nairn AEM (1997) Sedimentary basins and petroleum geology of the Middle East. Elsevier Science, Amsterdam, p 843pGoogle Scholar
  3. Amireh BS (1991) Mineral composition of the Cambrian—Cretaceous Nubian series of Jordan: provenance, tectonic setting and climatological implications. Sed Geol 71:99–119CrossRefGoogle Scholar
  4. Amireh BS (1992) Sedimentology and mineral composition of the Kurnub Sandstone in Wadi Qseib, SW Jordan. Sed Geol 78:267–283CrossRefGoogle Scholar
  5. Amireh BS (1994) Heavy and clay minerals as tools in solving stratigraphic problems: a case study from the Disi Sandstone (Early Ordovician) and the Kurnub Sandstone (Early Cretaceous) of Jordan. N Jb Geol Paläont Mh H 4:205–222Google Scholar
  6. Amireh BS (1997) Sedimentology and palaeogeography of the regressive-transgressive Kurnub Group (Early Cretaceous) of Jordan. Sed Geol 112:69–88CrossRefGoogle Scholar
  7. Asmar C, Grasemann B, Nader F, Tari G (2013) The Qartaba Anticline (central Mount Lebanon): Implications for the tectonic evolution of onshore Lebanon. In: EGU General Assembly Conference Abstracts, p 15Google Scholar
  8. Asmar C, Schneider DA, Grasemann B, Nader FH, Tari G (2014a). The Lower Cretaceous Chouf Sandstone of Lebanon: Tracking Caledonian tectonism in a Tethyan sediment. In: EGU General Assembly Conference Abstracts, p 16Google Scholar
  9. Asmar C, Grasemann B, Tari G (2014b) The Qartaba Structure (Mount Lebanon): structural study and modeling. In: EGU General Assembly Conference Abstracts, p 16Google Scholar
  10. Avigad D, Kolodner K, McWilliams M, Persing H, Weissbrod T (2003) Origin of northern Gondwana Cambrian sandstone revealed by detrital zircon SHRIMP dating. Geology 31:227–230CrossRefGoogle Scholar
  11. Avigad D, Sandler A, Kolodner K, Stern RJ, McWilliams M, Miller N, Beyth M (2005) Mass-production of Cambro-Ordovician quartz-rich sandstone as a consequence of chemical weathering of Pan-African terranes: Environmental implications. Earth Planet Sci Lett 240:818–826CrossRefGoogle Scholar
  12. Barabasch J, Ducros M, Hawie N, Bou Daher S, Nader FH, Littke R (2018) Integrated 3D forward stratigraphic and petroleum system modeling of the Levant Basin, Eastern Mediterranean. In: Basin Research, in pressGoogle Scholar
  13. Barrier É, Machhour L, Blaizot M (2014) Petroleum systems of Syria in Marlow L, Kendall C, Yose L (eds). AAPG Memoir 106:335–378Google Scholar
  14. Bauer H (2014) Tectonic evolution of the Northern Mount Lebanon region with particular reference to the Lower Cretaceous Chouf Formation (Lebanon), MSc thesis, University of Vienna, 153 pGoogle Scholar
  15. Bein A, Sofer Z (1987) Origin of oils in Helez region, Israel—implications for exploration in the eastern Mediterranean. Am Assoc Petrol Geol Bull 71:65–75Google Scholar
  16. Bellos GS (2008) Sedimentology and diagenesis of some Neocomian-Barremian rocks (Chouf Formation), Southern Lebanon. Master’s Thesis, American University of Beirut, Beirut, Lebanon, 277 pGoogle Scholar
  17. Beydoun ZR (1977a) Petroleum prospects of Lebanon: re-evaluation. Am Asso Petrol Geol Bull 61(1):43–64Google Scholar
  18. Beydoun ZR (1977b) The levantine countries: the geology of Syria and Lebanon (maritime regions). In: Nairn AEM, Kanes WH, Stehli FG (eds) the ocean basins and margins, vol 4A—the Eastern Mediterranean. Plenum Press, New York, pp 319–353CrossRefGoogle Scholar
  19. Beydoun ZR (1981) Some open questions relating to the petroleum prospects of Lebanon. J Pet Geol 3(3):303–314CrossRefGoogle Scholar
  20. Beydoun ZR (1988) The Middle East: regional geology and petroleum resources. Scientific Press Ltd, London, p 296Google Scholar
  21. Beydoun ZR, Dunnington HV (1975) The petroleum geology and resources of the Middle East. Scientific Press, Beaconsfield, England, p 100Google Scholar
  22. Beydoun ZR, As-Saruri ML, Baraba’ RS (1996) Sedimentary basins of the Republic of Yemen: their structural evolution and geological characteristics. Revue de l' Institute Francais du Petrole, 51, 763–775Google Scholar
  23. Bou Daher S, Ducros M, Michel P, Hawie N, Nader FH, Littke R (2016) 3D thermal history and maturity modelling of the Levant Basin and its eastern margin, offshore–onshore Lebanon. Arab J Geosci 9(6):440CrossRefGoogle Scholar
  24. Buck WR (1991) Modes of continental lithospheric extension. J Geophys Res Solid Earth 96(B12):20161–20178CrossRefGoogle Scholar
  25. Butler RWH, Spencer S, Griffiths HM (1998) The structural response to evolving plate kinematics during transpression: evolution of the Lebanese restraining bend of the Dead Sea Transform. In: Holdsworth RE, Strachan RA, Dewey JF (eds) Continental Transpressional and Transtensional Tectonics, vol 135. Geological Society London, Special Publications, pp 81–106CrossRefGoogle Scholar
  26. Chaimov TA, Barazangi M, Al-Saad D, Sawaf T, Gebran ALI (1992) Mesozoic and Cenozoic deformation inferred from seismic stratigraphy in the southwestern intracontinental Palmyride fold-thrust belt Syria. Geol Soc Am Bull 104:704–715CrossRefGoogle Scholar
  27. Clark GN, Boudagher-Fadel MK (2001) The larger benthic foraminifera and stratigraphy of the Upper Jurassic/Lower Cretaceous of Central Lebanon. Revue de micropaleontologie 44:215–232CrossRefGoogle Scholar
  28. Cohen Z (1976) Early Cretaceous buried canyon: influence on accumulation of hydrocarbons in the Helez oil field, Israel. AAPG Bulletin 60:108–114Google Scholar
  29. Collin PY, Mancinelli A, Chiocchini M, Mroueh M, Hamdam W, Higazi F (2010) Middle and Upper Jurassic stratigraphy and sedimentary evolution of Lebanon (Levantine margin). Palaeoenvironmental and geodynamic implications. In: Homberg C, Bachmann M (eds) Evolution of the Levant Margin and Western Arabia Platform since the Mesozoic, vol 341. Geological Society, London, Special Publications, pp 227–244CrossRefGoogle Scholar
  30. Daëron M (2005) Rôle, cinématique et comportement sismique á long terme de la faille de Yammoûneh. Unpublished Ph.D. thesis, Institut de Physique du Globe de Paris. 179 pGoogle Scholar
  31. Dickinson WR, Gehrels GE (2009) Use of U–Pb ages of detrital zircons to infer maximum depositional ages of strata: a test against a Colorado plateau Mesozoic database. Earth Planet Sci Lett 288:115–125CrossRefGoogle Scholar
  32. Dubertret L (1955) Carte Géologique du Liban au 1/200,000. Note ExplicativeGoogle Scholar
  33. Dubertret L (1963) Liban, Syrie: chaine des grands massifs côtiers et confins à l’est. In: Dubertret L (ed) Lexique Stratigraphique International III, Asie, CNRS Paris, Fasc. 9–103, 155 pGoogle Scholar
  34. Dubertret L (1966) Liban, Syrie et bordure des pays voisins. Première partie. Tableau stratigraphique avec carte géologique au millionième. Notes et Mém. Moyen Orient 8:251–358Google Scholar
  35. Dubertret L (1975) Introduction à la carte géologique a 1/50000 du Liban. Notes et Mém. Moyen-Orient 23:345–403Google Scholar
  36. EGAS (2012) Bid-round Technical Report, Block 6, N. El Arish offshore. Last accessed on 15 Sept 2018
  37. Ferry S, Merran Y, Grosheny D, Mroueh M (2007) The Cretaceous of Lebanon in the Middle East (Levant) In: Bulot LG, Ferry S, Grosheny D (eds) Relations between the northern and southern margins of the Tethys Ocean during the Cretaceous Period: Notebooks on Geology, Brest, Memoir 2007/2, pp 38–42Google Scholar
  38. Gardosh M, Tannenbaum E (2014) Petroleum systems of Israel. In: Marlow L, Kendall C, Yose L (eds) Petroleum systems of the Tethyan region. AAPG Memoir, pp 106, 179–216Google Scholar
  39. Gardosh M, Druckman Y, Buchbinder B, Rybakov M (2006) The Levant Basin Offshore Israel: stratigraphy, structure, tectonic evolution and implications for hydrocarbon exploration. Geophysical Institute of Israel, pp 1–119Google Scholar
  40. Gardosh MA, Garfunkel Z, Druckman Y, Buchbinder B (2010) Tethyan rifting in the Levant region and its role in Early Mesozoic crustal evolution. In: Homberg C, Bachmann M (eds) Evolution of the Levant Margin and Western Arabia Platform since the Mesozoic, Geological Society, London, Special Publications, vol 341, pp. 9–36CrossRefGoogle Scholar
  41. Gardosh MA, Weimer P, Flexer A (2011) The sequence stratigraphy of Mesozoic successions in the Levant margin southwestern Israel: a model for the evolution of southern Tethys margins. AAPG Bull 95:1763–1793CrossRefGoogle Scholar
  42. Garfunkel Z, Derin B (1983) Permian-early Mesozoic tectonism and continental margin formation in Israel and its implication for the history of the Eastern Mediterranean. In: Dixon JE, Robertson RHF (eds) The geological evolution of the Eastern Mediterranean: Geological Society London Spec. Publication 12, pp 187–202CrossRefGoogle Scholar
  43. Gehrels G, Pecha M (2014) Detrital zircon U–Pb geochronology and Hf isotope geochemistry of Paleozoic and Triassic passive margin strata of western North America. Geosphere 10(1):49–65CrossRefGoogle Scholar
  44. Ghalayini R, Daniel J-M, Homberg C, Nader FH, Comstock JE (2014) Impact of Cenozoic strike-slip tectonics on the evolution of the northern Levant Basin (offshore Lebanon). Tectonics 33(11):2121–2142CrossRefGoogle Scholar
  45. Ghalayini R, Daniel J, Homberg C, Nader FH, Darnault R, Mengus J, Barrier E (2017) The effect of the Palmyra trough and Mesozoic structures on the Levant margin and on the evolution of the Levant Restraining bend. In: Roure F, Amin A, Khomsi S, Al-Garni MAM (eds) Lithosphere dynamics and sedimentary basins of the Arabian plate and surrounding areas, Springer, pp 149–172Google Scholar
  46. Ghalayini R, Nader FH, Bou Daher S, Hawie N, Chbat WE (2018) Petroleum systems of Lebanon: an update and review. J Pet Geol 41(2):189–214CrossRefGoogle Scholar
  47. Gilboa Y, Fligelman H, Derin B (1990) Helez-Brur-Kokhav Field, Israel, Southern Coastal Plain. AAPG Treatise in Geology, Structural Traps IV: Tectonic and Nontectonic Fold Traps, pp 319–345Google Scholar
  48. Granier B, Azar D, Maksoud S, Gèze R, Habchi R (2015) New fossiliferous sites with Barremian Charophyta in the “Grès du Liban” auct. (Lebanon), with a critical perspective regarding the nature of Munieria Deecke, 1883. Carnets Geol 15:199–229Google Scholar
  49. Granier B, Toland C, Gèze R, Azar D, Maksoud S (2016) Some steps toward a new story for the Jurassic-Cretaceous transition in Mount Lebanon. Carnets Geol. 16:247–269CrossRefGoogle Scholar
  50. Guiraud R, Bosworth W (1997) Senonian basin inversion and rejuvenation of rifting in Africa and Arabia: synthesis and implications to plate-scale tectonics. Tectonophysics 282:39–82CrossRefGoogle Scholar
  51. Hatzenbichler G, Bauer H, Grasemann B, Tari G, Nader FH, Church J, Schneider D (2013) The lower cretaceous chouf sandstone of Lebanon: is it a syn-rift clastic sequence? EGU General Assembly Conference Abstracts, 15, 9816Google Scholar
  52. Hawie N, Gorini C, Deschamps R, Nader FH, Montadert L, Grajeon D, Baudin F (2013) Tectono-stratigraphic evolution of the northern Levant Basin (offshore Lebanon). Mar Pet Geol 48:392–410CrossRefGoogle Scholar
  53. Heybroek F (1942) La géologie d’une partie du Liban Sud. Leidsche Geol Meded 12:251–470Google Scholar
  54. Heybroek M, Dubertret L (1945) Cartes géologiques du liban au 1:50 000e. Feuille de Jezzine (avec notice explicative). République Libanaise, Ministére des Travaux Publics, BeyrouthGoogle Scholar
  55. Homberg C, Barrier E, Mroueh M, Hamdan W, Higazi F (2009) Basin tectonics during Early Cretaceous in the Levant margin, Lebanon. J Geodynam 47:218–223CrossRefGoogle Scholar
  56. Homberg C, Barrier E, Mroueh M, Müller C, Hamdan W, Higazi F (2010) Tectonic evolution of the central Levant margin (Lebanon) since Mesozoic. In: Homberg C, Bachmann M (eds) Evolution of the Levant Margin and Western Arabia Platform since the Mesozoic. Geological Society, London. Special Publication, vol 341, pp 245–268Google Scholar
  57. Inati L, Zeyen H, Nader FH, Adelinet M, Sursock A, Rahhal ME, Roure F (2016) Lithospheric architecture of the Levant Basin (Eastern Mediterranean region): a 2D modeling approach. Tectonophysics 693:143–156CrossRefGoogle Scholar
  58. Inati L, Lecomte JC, Zeyen H, Nader FH, Adelinet M, Rahhal ME, Sursock A (2018) Crustal configuration in the northern Levant basin based on seismic interpretation and numerical modeling. Mar Pet Geol 93:182–204CrossRefGoogle Scholar
  59. Kanaan F (1966) Sedimentary structures and thickness and facies variation in the basal cretaceous sandstones of central lebanon. Master’s thesis, American University of Beirut, Faculty of Arts and Sciences, Department of GeologyGoogle Scholar
  60. Klitzch E, Squyres C (1990) Paleozoic and Mesozoic geological history of northeastern Africa based upon new interpretation of Nubian strata. Am Assoc Petrol Geol Bull 74:1203–1211Google Scholar
  61. Kolodner K, Avigad D, Mcwilliams M, Wooden JL, Weissbrod T, Feinstein S (2006) Provenance of north Gondwana Cambrian-Ordovician sandstone: U-Pb SHRIMP dating of detrital zircons from Israel and Jordan. Geol Mag 143:367–391CrossRefGoogle Scholar
  62. Kolodner K, Avigad D, Ireland TR, Garfunkel Z (2009) Origin of Lower Cretaceous (‘Nubian’) sandstones of North-east Africa and Arabia from detrital zircon U–Pb SHRIMP dating. Sedimentology 56(7):2010–2023CrossRefGoogle Scholar
  63. Lang B, Steinitz G (1989) K-Ar dating of Mesozoic magmatic rocks in Israel: a review. Israel J Earth Sci 38:89–103Google Scholar
  64. Laws ED, Wilson M (1997) Tectonics and magmatism associated with Mesozoic passive continental margin development in the Middle East. J Geol Soc (London) 154:459–464CrossRefGoogle Scholar
  65. Lüning S, Kuss J (2014) Petroleum geology of Jordan. In: L. Marlow, C. Kendall, L. Yose (eds) Petroleum systems of the Tethyan region. AAPG Memoir 106: 217–239Google Scholar
  66. Maksoud S, Granier B, Azar D, Gèze R, Paicheler JC, Moreno-Bedmar JA (2014) Revision of “Falaise de BLANCHE” (Lower Cretaceous) in Lebanon, with the definition of a Jezzinian Regional Stage. Carnets de Géologie 14(18):401–427Google Scholar
  67. Maksoud S, Azar D, Granier B, Gèze R (2017) New data on the age of the Lower Cretaceous amber outcrops of Lebanon. Palaeoworld 26(2):331–338CrossRefGoogle Scholar
  68. Moustafa AR, Khalil SM (1995) Rejuvenation of the Tethyan passive continental margin of northern Sinai: deformation style and age (Gebel Yelleq area). Tectonophysics 241:225–238CrossRefGoogle Scholar
  69. Mouty M, Delaloye M, Fontignie D, Piskin O, Wagner JJ (1992) The volcanic activity in Syria and Lebanon between Jurassic and Actual. Schweiz Miner Petrogr Mitt 72:91–105Google Scholar
  70. Nader FH (2011) The petroleum prospectivity of Lebanon: an overview. J Pet Geol 34(2):135–156CrossRefGoogle Scholar
  71. Nader FH (2014) The geology of Lebanon. Scientific Press Ltd., Beaconsfield, Bucks, UK, p 108Google Scholar
  72. Nader FH, Swennen R (2004) Petroleum prospects of Lebanon: some remarks from sedimentological and diagenetic studies of Jurassic carbonates. Mar Pet Geol 21:427–441CrossRefGoogle Scholar
  73. Nader FH, Browning-Stamp P, Lecomte JC (2016) Geological interpretation of 2D seismic reflection profiles onshore Lebanon: implications for petroleum exploration. J Pet Geol 39(4):333–356CrossRefGoogle Scholar
  74. Ponikarov VP, Kazmin VG, Kozlov VV, Krasheninnikov VA, Kikhailov IA, Razvalyaev AV, Sulidi-Kondratoev ED, Uflyand AK, Faradzhev VA (1969) Syria, p 215.
  75. Quennel AM (1984) The western Arabia rift system. In: Dixon JE, Robertson AHF (eds) The geological evolution of the Eastern Mediterranean. Blackwell, Oxford, pp 775–788Google Scholar
  76. Reches ZE, Hoexter DF, Hirsch F (1981) The structure of a monocline in the Syrian Arc system, middle east-surface and subsurface analysis. J Pet Geol 3:413–426CrossRefGoogle Scholar
  77. Renouard G (1955) Oil prospects of Lebanon bull. Am Assoc Petrol Geol Bull 39(11):2125–2169Google Scholar
  78. Roberts G, Peace D (2007) Hydrocarbon plays and prospectively of the Levantine Basin, offshore Lebanon and Syria from modern seismic data. GeoArabia 12:99–124Google Scholar
  79. Saint-Marc P (1970) Contribution a la Connaissance du Crétacé Basal au Liban: Rev. Micropaleontol 12:224–233Google Scholar
  80. Saint-Marc P (1980) Le passage Jurassique-Crétacé et le. Crétacé inférieur de la region de Ghazir (Liban central). Géologie Méditerranéenne 7:237–245CrossRefGoogle Scholar
  81. Segev A (2009) Ar-40/Ar-39 and K-Ar geochronology of Berriasian-Hauterivian and Cenomanian tectonomagmatic events in northern Israel: implications for regional stratigraphy. Cretac Res 30:810–828CrossRefGoogle Scholar
  82. Segev A, Sass E, Schattner U (2018) Age and structure of the Levant basin, Eastern Mediterranean. Earth Sci Rev 182:233–250CrossRefGoogle Scholar
  83. Shenhav H (1971) Lower Cretaceous sandstone reservoirs, Israel: petrography, porosity, permeability. AAPG Bull 55:2194–2224Google Scholar
  84. Shimron AF, Lang B (1989) Cretaceous magmatism along the southeastern flanks of Mount Hermon. Israel J Earth Sci 38:125–142Google Scholar
  85. Tixier B (1972) Le “Grès de Base” Crétacé du Liban: Étude Stratigraphique et Sédimentologique. Notes et Mémoires sur le MoyenOrient. 12:187–215Google Scholar
  86. Ukla S (1970) Subsurface geology and well correlation in north and central Lebanon: Master’s Thesis. American University of Beirut, Beirut, Lebanon, p 125Google Scholar
  87. Vermeesch P (2004) How many grains are needed for a provenance study? Earth Planet Sci Lett 224:441–451CrossRefGoogle Scholar
  88. Walley CD (1983) A revision of the Lower Cretaceous stratigraphy of Lebanon. Geol Rundsch 72:377–388CrossRefGoogle Scholar
  89. Walley CD (1988) A braided strike-slip model for the northern continuation of the Dead Sea Fault and its implications for Levantine tectonics. Tectonophysics 145:63–72CrossRefGoogle Scholar
  90. Walley CD (1997) The lithostratigraphy of Lebanon: a review. Lebanese Science Bulletin 10:81–107Google Scholar
  91. Walley CD (1998) Some outstanding issues in the geology of Lebanon and their importance in the tectonic evolution of the Levantine Region. Tectonophysics 298(1):37–62CrossRefGoogle Scholar
  92. Walley CD (2001) The Lebanon passive margin and the evolution of the Levantine Neo-Tethys. In: Ziegler PA, Cavazza W, Robertson AHF, Crasquin Soleau S (eds) Peri-Tethys Memoir 6: Peri-Tethan Rift/Wrench Basins and Passive Margins, Mémoires du Muséum national d’histoire naturelle 186:407–439Google Scholar
  93. Weissbrod T (2005) The Palaeozoic of Israel and its Environs. In: Hall JK, Krasheninnikov VA, Hirsch F, Benjamini C, Flexer A (eds) Geological Framework of the Levant. Volume II: The Levantine Basin and Israel, pp 283–316Google Scholar
  94. Wood BGM (2015) Rethinking post-Hercynian basin development: Eastern Mediterranean region. GeoArabia 20(3):175–224Google Scholar
  95. Yousef M, Moustafa AR, Shann M (2010) Structural setting and tectonic evolution of offshore north Sinai, Egypt. In: Homberg C, Bachmann M (eds) Evolution of the Levant Margin and Western Arabia Platform since the Mesozoic, Geological Society, London, Special Publications, vol 341, pp 65–84Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Gabor Tari
    • 1
    Email author
  • Chloe Asmar
    • 1
  • David Schneider
    • 2
  • Fadi H. Nader
    • 3
  • Bernhard Grasemann
    • 4
  • Jonathan Church
    • 1
  • Andras Zamolyi
    • 1
  • Mohammad Fallah
    • 1
  • Harald Bauer
    • 4
  • Georg Hatzenbichler
    • 4
  1. 1.OMV Exploration & ProductionViennaAustria
  2. 2.Department of Earth and Environmental SciencesUniversity of OttawaOttawaCanada
  3. 3.Department of GeologyIFP Energies NouvellesParisFrance
  4. 4.Department of Geodynamics and SedimentologyUniversity of ViennaViennaAustria

Personalised recommendations