Skip to main content

Sedation and Analgesia

  • Chapter
  • First Online:
Critical Care of Children with Heart Disease

Abstract

Management of sedation and analgesia in the pediatric patient after cardiac surgery and cardiopulmonary bypass is of particular importance in the setting of decreased cardiac function and increased metabolic oxygen demands secondary to inflammatory responses. Important considerations include the relief of pain and anxiety, attenuation of the stress response, and maintaining mechanical ventilation synchrony. Opioid and benzodiazepine medications have historically been the mainstay sedative and analgesic agents in the intensive care unit, and they do indeed still have an important role. Still, other agents, such as dexmedetomidine, ketamine, propofol, and neuromuscular blockers, will help to provide a more balanced and tailored sedative and analgesic plan in order to maintain a level of non-agitation and hemodynamic stability in a wide variety of pediatric patients with specific needs. Additionally, many pediatric patients with congenital cardiac disease will require extracorporeal membrane oxygenation, which presents many pharmacokinetic implications that will significantly alter the pharmacodynamic effects of some of these drugs. Thus, the understanding of these alterations and the ability to adapt the patient’s sedative and analgesic plan to account for them is a necessity.

Steven E. Litchenstein is deceased at the time of publication of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andropoulos DB, Stayer SA, Mossad EB, Miller-Hance WC. Anesthesia for congenital heart disease, 2nd ed. Hoboken, NJ: Wiley; 2015:603

    Book  Google Scholar 

  2. Mertens LL, Schwartz SM. Sedation practices in pediatric cardiac ICUs after cardiopulmonary bypass. Pediatr Crit Care Med. 2016;17:369–370

    Article  PubMed  Google Scholar 

  3. Shi S, Zhao Z, Liu X, Shu Q, Tan L, Lin R, Shi Z, Fang X. Perioperative risk factors for prolonged mechanical ventilation following cardiac surgery in neonates and young infants. Chest. 2008;134:768–774

    Article  PubMed  Google Scholar 

  4. Laussen PC, Reid RW, Stene RA, Pare DS, Hickey PR, Jonas RA, Freed MD. Tracheal extubation of children in the operating room after atrial septal defect repair as part of a clinical practice guideline. Anesth Analg. 1996;82:988–993

    CAS  PubMed  Google Scholar 

  5. Shew SB, Jaksic T. The metabolic needs of critically ill children and neonates. Semin Pediatr Surg. 1999;8:131–139

    Article  CAS  PubMed  Google Scholar 

  6. Anand KJS, Hansen DD, Hickey PR. Hormonal—metabolic stress responses in neonates undergoing cardiac surgery. Anesthesiology. 1990;73:661–670

    Article  CAS  PubMed  Google Scholar 

  7. Stoelting RK, Hillier S, Stoelting RK. Pharmacology & Physiology in Anesthetic Practice. Philadelphia: Lippincott Williams & Wilkins; 2006

    Google Scholar 

  8. Barash PG, Cullen BF, Stoelting RK, Cahalan MK, Stock MC, Ortega RA, Sharar SR, Holt NF. Opioids. In: Clinical Anesthesia. Philadelphia, PA: Wolters Kluwer; 2017:501–522

    Google Scholar 

  9. Pasternak GW. Opioid receptors. In: Handbook of Contemporary Neuropharmacology. Hoboken, NJ: Wiley; 2007, https://doi.org/10.1002/9780470101001.hcn044

    Chapter  Google Scholar 

  10. Butterworth JF, Mackey DC, Wasnick JD. Analgesic agents. In: Morgan & Mikhailʼs Clinical Anesthesiology, 5th ed. New York: McGraw Hill; 2013:189–197

    Google Scholar 

  11. Mackenzie M, Zed PJ, Ensom MHH. Opioid pharmacokinetics-pharmacodynamics. Ann Pharmacother. 2016;50:209–218

    Article  CAS  PubMed  Google Scholar 

  12. Dervan LA, Yaghmai B, Watson RS, Wolf FM. The use of methadone to facilitate opioid weaning in pediatric critical care patients: a systematic review of the literature and meta-analysis. Pediatr Anesth. 2017;27:228–239

    Article  Google Scholar 

  13. Gruber EM, Laussen PC, Casta A, et al. Stress response in infants undergoing cardiac surgery: a randomized study of fentanyl bolus, fentanyl infusion, and fentanyl-midazolam infusion. Anesth Analg. 2001;92:882–890

    Article  CAS  PubMed  Google Scholar 

  14. Motoyama EK, Davis PJ, Cladis FP. Pharmacology of pediatric anesthesia. In: Smiths anesthesia for infants and children. St. Louis, MO: Mosby; 2009:210–220

    Google Scholar 

  15. Faerber J, Zhong W, Dai D, Baehr A, Maxwell LG, Kraemer FW, Feudtner C. Comparative safety of morphine delivered via intravenous route vs. patient-controlled analgesia device for pediatric inpatients. J Pain Symptom Manage. 2017;53:842–850

    Article  PubMed  Google Scholar 

  16. Monitto CL, Greenberg RS, Kost-Byerly S, Wetzel RC, Yaster M. Safety and efficacy of parent/nurse controlled analgesia in patients less than 6 years of age. Anesthesiology. 1998;89:1324A

    Article  Google Scholar 

  17. Motoyama EK, Davis PJ, Cladis FP. Pain management. In: Smith’s Anesthesia for Infants and Children. St. Louis, MO: Mosby; 2009

    Google Scholar 

  18. Silva PSCALD, Reis ME, Fonseca TSM, Fonseca MCM. Opioid and benzodiazepine withdrawal syndrome in PICU patients. J Addict Med. 2016;10:110–116

    Article  CAS  PubMed  Google Scholar 

  19. Bagley SM, Wachmann EM, Holland E, Brogly SM. Review of the assessment and management of neonatal abstinence syndrome. Addict Sci Clin Pract. 2014;9:1–10

    Article  Google Scholar 

  20. Dahan A, Aarts L, Smith TW. Incidence, reversal, and prevention of opioid-induced respiratory depression. Anesthesiology. 2010;112:226–238

    Article  PubMed  Google Scholar 

  21. Moreland T, Brice J, Walker C, Parija A. Naloxone pharmacokinetics in the newborn. Br J Clin Pharmacol. 1980;9:609–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dowling J, Isbister GK, Kirkpatrick CMJ, Naidoo D, Graudins A. Population pharmacokinetics of intravenous, intramuscular, and intranasal naloxone in human volunteers. Ther Drug Monit. 2008;30(4):490–6.

    Google Scholar 

  23. Barrons RW, Woods JA. Low-dose naloxone for prophylaxis of postoperative nausea and vomiting: a systematic review and meta-analysis. Pharmacotherapy. 2017;37:546–554

    Article  CAS  PubMed  Google Scholar 

  24. Coté CJ. Sedation for the pediatric patient: a review. Pediatr Clin North Am. 1994;41:31–58

    Article  PubMed  Google Scholar 

  25. Coté CJ, Lerman J, Ward RM, Lugo RA, Goudsouzian N. Pharmacokinetics and pharmacology of drugs used in children. In: A Practice of Anesthesia for Infants and Children. Philadelphia, PA: Saunders; 2009: 89–146

    Chapter  Google Scholar 

  26. Reves JG, Fragen RJ, Vinik HR, Greenblatt DJ. Midazolam. Anesthesiology. 1985;62:310–324

    Article  CAS  PubMed  Google Scholar 

  27. Dilorenzo AN, Schell RM. Intravenous Anesthetics. In: Morgan & Mikhail’s Clinical Anesthesiology, 5th ed. New York: McGraw-Hill; 2014:179–184

    Google Scholar 

  28. Sheridan RL, Keaney T, Stoddard F, Enfanto R, Kadillack P, Breault L. Short-term propofol infusion as an adjunct to extubation in burned children. J Burn Care Rehabil. 2003;24:356–360

    Article  PubMed  Google Scholar 

  29. Anand KJS, Willson DF, Berger J, et al. Tolerance and withdrawal from prolonged opioid use in critically ill children. Pediatrics. 2010; https://doi.org/10.1542/peds.2009-0489

  30. Best KM, Boullata JI, Curley MAQ. Risk factors associated with iatrogenic opioid and benzodiazepine withdrawal in critically ill pediatric patients. Pediatr Crit Care Med. 2015;16:175–183

    Article  PubMed  PubMed Central  Google Scholar 

  31. Shannon M, Albers G, Burkhart K, Liebelt E, Kelley M, Mccubbin MM, Hoffman J, Massarella J. Safety and efficacy of flumazenil in the reversal of benzodiazepine-induced conscious sedation. J Pediatr. 1997;131:582–586

    Article  CAS  PubMed  Google Scholar 

  32. Motoyama EK, Davis PJ, Cladis FP. Pharmacology of pediatric anesthesia. In: Smiths Anesthesia for Infants and Children. St. Louis, MO: Mosby; 2009:202

    Google Scholar 

  33. Tobias JD. Dexmedetomidine: Applications in pediatric critical care and pediatric anesthesiology. Pediatr Crit Care Med. 2007;8:115–131

    Article  PubMed  Google Scholar 

  34. Khan ZP, Ferguson CN, Jones RM. Alpha-2 and imidazoline receptor agonists: Their pharmacology and therapeutic role. Anaesthesia. 1999;54:146–165

    Article  CAS  PubMed  Google Scholar 

  35. Phan H, Nahata MC. Clinical uses of dexmedetomidine in pediatric patients. Pediatr Drugs. 2008;10:49–69

    Article  Google Scholar 

  36. Mason KP, Lerman J. Dexmedetomidine in children. Anesth Analg. 2011;113:1129–1142

    Article  CAS  PubMed  Google Scholar 

  37. Dyck JB, Shafer SL. Dexmedetomidine pharmacokinetics and pharmacodynamics. Anesth Pharmacol Rev. 1993;1:238–245

    CAS  Google Scholar 

  38. Chrysostomou C, Filippo SD, Manrique A-M. Use of dexmedetomidine in children after cardiac and thoracic surgery. Pediatr Crit Care Med. 2006;7:194

    Article  Google Scholar 

  39. Petroz GC, Sikich N, James M, et al. A phase I, 2-center study of the pharmacokinetics and pharmacodynamics of dexmedetomidine in children. Anesthesiology. 2006;105:1098–1110

    Article  CAS  PubMed  Google Scholar 

  40. Prielipp RC, Wall MH, Tobin JR, et al. Dexmedetomidine- induced sedation in volunteers decreases regional and global cerebral blood flow. Anesth Analg. 2002;95:1052–1059.

    CAS  PubMed  Google Scholar 

  41. Karlsson BR, Forsman M, Roald OK, Heier MS, Steen PA. Effect of Dexmedetomidine, a selective and potent α2-agonist, on cerebral blood flow and oxygen consumption during halothane anesthesia in dogs. Anesth Analg. 1990; https://doi.org/10.1213/00000539-199008000-00003

  42. Vartiainen J, MacDonald E, Urtri A, et al. Dexmedetomidine- induced ocular hypotension in rabbits with normal or elevated intracranial pressure. Invest Ophthalmol Vis Sci. 1992;33:2019–2023.

    CAS  PubMed  Google Scholar 

  43. Doufas AG, Lin CM, Suleman MI, et al. Dexmedetomidine and meperidine actively reduce the shivering threshold in humans. Stroke. 2003;34:1218–1223

    Article  CAS  PubMed  Google Scholar 

  44. Hammer GB, Drover DR, Cao H. The effects of dexmedetomidine on cardiac electrophysiology in children. Anesth Analg. 2008;106:79–83

    Article  CAS  PubMed  Google Scholar 

  45. Belleville JP, Ward DS, Bloor BC, et al. Effects of intravenous dexmedetomidine in humans: sedation, ventilation, and metabolic rate. Anesthesiology. 1992;77:1125–1133.

    Article  CAS  PubMed  Google Scholar 

  46. Gertler R, Brown HC, Mitchell D, Silvius E. Dexmedetomidine: a novel sedative-analgesic agent. Proc (Bayl Univ Med Cent). 2001;14:13–21

    Article  CAS  Google Scholar 

  47. Afonso J, Reis F. Dexmedetomidine: current role in anesthesia and intensive care. Braz J Anesthesiol. 2012;62:118–133

    Article  CAS  Google Scholar 

  48. Kaur M, Singh P. Current role of dexmedetomidine in clinical anesthesia and intensive care. Anesth Essays Res. 2011;5:128

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lodge D, Mercier MS. Ketamine and phencyclidine: the good, the bad and the unexpected. Br J Pharmacol. 2015;172:4254–4276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Domino EF. Taming the ketamine tiger. Anesthesiology. 2010;113:678

    PubMed  Google Scholar 

  51. Morray JP, Lynn AM, Stamm SJ, Herndon PS, Kawabori I, Stevenson JG. Hemodynamic effects of ketamine in children with congenital heart disease. Anesth Analg. 1984;63: 895–899.

    CAS  PubMed  Google Scholar 

  52. Hickey PR, Hansen DD, Cramolini GM. Pulmonary and systemic hemodynamic responses to ketamine in infants with normal and elevated pulmonary vascular resistance. Anesthesiology. 1984;61:A438.

    Article  Google Scholar 

  53. Raeder J. Ketamine, revival of a versatile intravenous anaesthetic. In: Advances in Modelling and Clinical Application of Intravenous Anaesthesia, Advances in Experimental Medicine and Biology. New York, NY/London: Kluwer Academic; 2003:269–277

    Google Scholar 

  54. Green SM, Denmark TK, Cline J, Roghair C, Allah SA, Rothrock SG. Ketamine sedation for pediatric critical care procedures. Pediatr Emerg Care. 2001;17:244–248

    Article  CAS  PubMed  Google Scholar 

  55. Vanlersberghe C, Camu F. Modern anesthetics. In: Handbook of Experimental Pharmacology. Berlin: Springer; 2008:227

    Google Scholar 

  56. Morgan D, Campbell G, Crankshaw D. Pharmacokinetics of propofol when given by intravenous infusion. Br J Clin Pharmacol. 1990;30:144–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Khurmi N, Patel P, Kraus M, Trentman T. Pharmacologic considerations for pediatric sedation and anesthesia outside the operating room: a review for anesthesia and non-anesthesia providers. Pediatr Drugs. 2017;19:435–446

    Article  Google Scholar 

  58. Marik P. Propofol: therapeutic indications and side-effects. Curr Pharm Des. 2004;10:3639–3649

    Article  CAS  PubMed  Google Scholar 

  59. Lee C. Structure, conformation, and action of neuromuscular blocking drugs†. Br J Anaesth. 2001;87:755–769

    Article  CAS  PubMed  Google Scholar 

  60. Barash PG, Cullen BF, Stoelting RK, Cahalan MK, Stock MC, Ortega RA, Sharar SR, Holt NF. Neuromuscular blocking agents. In: Clinical Anesthesia. Philadelphia, PA: Wolters Kluwer; 2017:522–563.

    Google Scholar 

  61. Naquib L, Miller RD, Erikson LI, Wiener-Kronish JP, Young WL. Pharmacology of muscle relaxants and their antagonists. In: Miller’s Anesthesia. Philadelphia, PA: Churchill Livingstone; 2010.

    Google Scholar 

  62. Hristovska AM, Duch P, Allingstrup M, Afshari A. Efficacy and safety of sugammadex versus neostigmine in reversing neuromuscular blockade in adults. Cochrane Database Syst Rev. 2017;8:CD012763.

    Google Scholar 

  63. Bridion (sugammadex) [prescribing information]. Whitehouse Station, NJ; Merck & Co, Inc; 2016.

    Google Scholar 

  64. Burda G, Trittenwein G. Issues of pharmacology in pediatric cardiac extracorporeal membrane oxygenation with special reference to analgesia and sedation. Artif Organs. 1999;23:1015–1019

    Article  CAS  PubMed  Google Scholar 

  65. Buck ML. Pharmacokinetic changes during extracorporeal membrane oxygenation. Clin Pharmacokinet. 2003;42:403–417

    Article  CAS  PubMed  Google Scholar 

  66. Harthan A, Buckley K, Heger M, Fortuna R, Mays K. Medication adsorption into contemporary extracorporeal membrane oxygenator circuits. J Pediatr Pharmacol Ther. 2014;19:288–295

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phillip S. Adams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roney, G., Jooste, E.H., Callahan, P.M., Litchenstein, S.E., Davis, P.J., Adams, P.S. (2020). Sedation and Analgesia. In: Munoz, R., Morell, V., da Cruz, E., Vetterly, C., da Silva, J. (eds) Critical Care of Children with Heart Disease . Springer, Cham. https://doi.org/10.1007/978-3-030-21870-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21870-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21869-0

  • Online ISBN: 978-3-030-21870-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics