Skip to main content

Echocardiography

  • Chapter
  • First Online:
Critical Care of Children with Heart Disease

Abstract

Echocardiography in its current form has become an invaluable tool in the modern practice of pediatric cardiology. Coupled with clinical examination and monitoring techniques, echocardiography can provide real-time rapid and reliable diagnostic answers that are invaluable to patient care. This noninvasive test can be used to reliably evaluate cardiac anatomy of both normal hearts and those with congenital heart disease and has replaced cardiac angiography for the preoperative diagnosis of the majority of congenital heart lesions. In congenital or acquired cardiac disease, echocardiography may be further used to estimate intracardiac pressures and gradients across stenotic valves and vessels, determine the directionality of blood flow and pressure gradient across a defect, and examine the coronary arteries. Within the realm of critical care, echocardiography is useful to estimate cardiac systolic and diastolic function, to evaluate hemodynamics in critically ill patients and target specific intervention, to detect the presence of vegetation from endocarditis, to examine the cardiac structure, and to look for the presence of pericardial fluid and chamber thrombi. As with all tools, however, a thorough understanding of its uses and limitations are necessary before relying upon the information it provides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Elder I, Hertz CH. The use of ultrasonic reflectoscope for the continuous recording of movement of heart walls. Kungl Fysiorgr Sallski Fund Forhandl. 1954;24:40–45.

    Google Scholar 

  2. Krabill KA, Ring WS, Foker JE, et al. Echocardiographic versus cardiac catheterization diagnosis of infants with congenital heart disease requiring cardiac surgery. Am J Cardiol. 1987;60:351–354.

    Article  CAS  PubMed  Google Scholar 

  3. Marino B, Corno A, Carotti A, et al. Pediatric cardiac surgery guided by echocardiography: established indications and new trends. Scand J Thorac Cardiovasc Surg. 1990;24:197–201.

    Article  CAS  PubMed  Google Scholar 

  4. Tworetzky W, McElhinney DB, Brook MM, et al. Echocardiographic diagnosis alone for the complete repair of major congenital heart defects. J Am Coll Cardiol. 1999;33:228–233.

    Article  CAS  PubMed  Google Scholar 

  5. Tissot C, Muehlethaler V, Sekarski N. Basics of functional echocardiography in children and neonates. Front Pediatr. 2017;5:235. https://doi.org/10.3389/fped.2017.00235. eCollection 2017. Review. PMID: 29250515.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Beaulieu Y, Marik PE. Bedside ultrasonography in the ICU. Chest. 2005;128:881–895.

    Article  PubMed  Google Scholar 

  7. Franklin DL, Schlegal W, Rushmer RF. Blood flow measured by Doppler frequency shift of backscattered ultrasound. Science. 1961;134:564.

    Article  CAS  PubMed  Google Scholar 

  8. Cyran SE, Hannon DW, Daniels SR, et al. Predictors of post-operative ventricular dysfunction in infants who have undergone primary repair of ventricular septal defect. Am Heart J. 1987;113:1144–1148.

    Article  CAS  PubMed  Google Scholar 

  9. Beghetti M. Echocardiographic evaluation of pulmonary pressures and right ventricular function after pediatric cardiac surgery: a simple approach for the intensivist. Front Pediatr. 2017;5:184. https://doi.org/10.3389/fped.2017.00184. eCollection 2017. Review. PMID: 28900614.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Skinner GJ. Echocardiographic assessment of pulmonary arterial hypertension for pediatricians and neonatologists. Front Pediatr. 2017;5:168. https://doi.org/10.3389/fped.2017.00168. eCollection 2017.

  11. Margossian R, Schwartz ML, Prakash A, Wruck L, Colan SD, Atz AM, Bradley TJ, Fogel MA, Hurwitz LM, Marcus E, Powell AJ, Printz BF, Puchalski MD, Rychik J, Shirali G, Williams R, Yoo SJ, Geva T; Pediatric Heart Network Investigators. Comparison of echocardiographic and cardiac magnetic resonance imaging measurements of functional single ventricular volumes, mass, and ejection fraction (from the Pediatric Heart Network Fontan Cross-Sectional Study). Am J Cardiol. 2009;104(3):419–428. https://doi.org/10.1016/j.amjcard.2009.03.058.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gutgesell HP, Paquet M, Duff DF, et al. Evaluation of left ventricular size and function by echocardiography. Results in normal children. Circulation. 1977;56:457–462.

    Article  CAS  PubMed  Google Scholar 

  13. Rowland DG, Gutgesell HP. Noninvasive assessment of myocardial contractility, preload, and afterload in healthy newborns. Am J Cardiol. 1995;75:818–821.

    Article  CAS  PubMed  Google Scholar 

  14. Colan SD, Parness IA, Spevak SP. Developmental modulation of myocardial mechanics: age and growth related alterations in afterload and contractility. J Am Coll Cardiol. 1992;19:619–629.

    Article  CAS  PubMed  Google Scholar 

  15. Schiller NB, Acquatella H, Ports TA, et al. Left ventricular volume from paired biplane two dimensional echocardiography. Circulation. 1979;60:547–555.

    Article  CAS  PubMed  Google Scholar 

  16. Silverman NH, Ports TA, Snider AR, et al. Determination of left ventricular volume in children: echocardiographic and angiographic comparisons. Circulation. 1980;62:548–557.

    Article  CAS  PubMed  Google Scholar 

  17. Tei C, Ling LH, Hodge DO, et al. New index of combined systolic and diastolic myocardial performance: a simple and reproducible measure of cardiac function-a study in nor- mals and dilated cardiomyopathy. J Cardiol. 1995; 26:357–366.

    CAS  PubMed  Google Scholar 

  18. Eto G, Ishii M, Tei C, Tsutsumi T, Akagi T, Kato H: Assessment of global left ventricular function in normal children and in children with dilated cardiomyopathy. J Am Soc Echocardiogr. 1999;12:1058–1064.

    Article  CAS  PubMed  Google Scholar 

  19. Redington AN, Rigby MI, Shinebourne EA, et al. Changes in the pressure-volume relation of the right ventricle when its loading conditions are modified. Br Heart J. 1990;63:45–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rudski LG, Lai WW, Afilalo J, et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European society of Cardiology and the Canadian Society for echocardiography. J Am Soc Echocardiogr. 2010;23(7):685–713.

    Article  PubMed  Google Scholar 

  21. Warnes CA. Adult congenital heart disease: importance of the right ventricle. J Am Coll Cardiol. 2009;54(21):1903–1910.

    Article  PubMed  Google Scholar 

  22. Kjaergaard J, Petersen C, Kjaer A, et al. Evaluation of right ventricular volume and function by 2D and 3D echocardiography compared to MRI. Eur J Echocardiogr. 2006;7:340–348.

    Article  Google Scholar 

  23. Dokainish H. Tissue Doppler imaging in the evaluation of left ventricular diastolic function. Curr Opin Cardiol. 2004;19:437–441.

    Article  PubMed  Google Scholar 

  24. Gulati VK, Katz WE, Follansbee WP, et al. Mitral annular descent velocity by tissue Doppler echocardiography as an index of global left ventricular function. Am J Cardiol. 1996;77:979–984.

    Article  CAS  PubMed  Google Scholar 

  25. Vignon P, Allot V, Lesage J, et al. Diagnosis of left ventricular diastolic dysfunction in the setting of acute changes in loading conditions. Crit Care. 2007;11:R43.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Eidem BW, McMahon CJ, Ayres NA, et al. Impact of chronic left ventricular preload and afterload on Doppler tissue imaging velocities: a study in congenital heart disease. J Am Soc Echocardiogr. 2005;18:830–838.

    Article  PubMed  Google Scholar 

  27. Nagueh SF, Middleton KJ, Kopelen HA, et al. Doppler tissue imaging: a noninvasive technique for evaluation of left ventricular relaxation and estimation of filling pressures. J Am Coll Cardiol. 1997;30:1527–1533.

    Article  CAS  PubMed  Google Scholar 

  28. Ommen SR, Nishimura RA, Appleton CP, et al. Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures: a comparative simultaneous Doppler-catheterization study. Circulation. 2000;102:1788–1794.

    Article  CAS  PubMed  Google Scholar 

  29. Singh Y. Echocardiographic evaluation of hemodynamics in neonates and children. Front Pediatr. 2017;5:201. https://doi.org/10.3389/fped.2017.00201. eCollection 2017. Review. PMID: 28966921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Alverson DC, Eldridge M, Dillon T, Yabek SM, Berman W Jr. Noninvasive pulsed Doppler determination of cardiac output in neonates and children. J Pediatr. 1982;101:46–50.

    Article  CAS  PubMed  Google Scholar 

  31. Ficial B, Finnemore AE, Cox DJ, Broadhouse KM, Price AN, Durighel G, et al. Validation study of the accuracy of echocardiographic measurements of systemic blood flow volume in newborn infants. J Am Soc Echocardiogr. 2013;26:1365–1371.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Barbier C, Loubières Y, Schmit C, Hayon J, Ricôme JL, Jardin F, Vieillard-Baron A. Respiratory changes in inferior vena cava diameter are helpful in predicting fluid responsiveness in ventilated septic patients. Intensive Care Med. 2004;30(9):1740–1746. Epub 2004 Mar 18.

    PubMed  Google Scholar 

  33. Feissel M, Michard F, Mangin I, Ruyer O, Faller JP, Teboul JL. Respiratory changes in aortic blood velocity as an indicator of fluid responsiveness in ventilated patients with septic shock. Chest. 2001;119(3):867–873.

    Article  CAS  PubMed  Google Scholar 

  34. Hicks KA, Kovack JA, Yoon GY, et al. Echocardiographic evaluation of papillary fibroelastoma: a case report and review of the literature. J Am Soc Echocardiogr. 1996;9:353–360.

    Article  CAS  PubMed  Google Scholar 

  35. Pérez-Casares A, Cesar S, Brunet-Garcia L, Sanchez-de-Toledo J. Echocardiographic evaluation of pericardial effusion and cardiac tamponade. Front Pediatr. 2017;5:79. https://doi.org/10.3389/fped.2017.00079. eCollection 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Appleton CP, Hatle LK, Popp RL. Cardiac tamponade and pericardial effusion: respiratory variation in transvalvular flow velocities studied by Doppler echocardiography. J Am Coll Cardiol. 1988;11:1020–1030.

    Article  CAS  PubMed  Google Scholar 

  37. Singh S, Wann S, Schuchard G, et al. Right ventricular and right atrial collapse in patients with cardiac tamponade: a combined echocardiographic and hemodynamic study. Circulation. 1984;70:966–971.

    Article  CAS  PubMed  Google Scholar 

  38. Armstrong W, Schilt B, Helper D, et al. Diastolic collapse of the right ventricle with cardiac tamponade: an echocardiographic study. Circulation. 1982;65:1491–1496.

    Article  CAS  PubMed  Google Scholar 

  39. Chuttani K, Pandian N, Mohandy P, et al. Left ventricular diastolic collapse: an echocardiographic sign of regional cardiac tamponade. Circulation. 1991;83:1999–2006.

    Article  CAS  PubMed  Google Scholar 

  40. Himelman R, Kircher B, Rockey D, et al. Inferior vena cava plethora with blunted respiratory response: a sensitive echocardiographic sign of cardiac tamponade. J Am Coll Cardiol. 1988;12:1470–1477.

    Article  CAS  PubMed  Google Scholar 

  41. Burstow DJ, Oh JK, Bailey KR, et al. Cardiac tamponade: characteristic Doppler observations. Mayo Clin Proc. 1989;64:312–324.

    Article  CAS  PubMed  Google Scholar 

  42. Kronzon I, Cohen ML, Winer HE. Diastolic atrial compression: a sensitive echocardiographic sign of cardiac tamponade. J Am Coll Cardiol. 1983;2:770–775.

    Article  CAS  PubMed  Google Scholar 

  43. Kilpatrick ZM, Chapman CB. On pericardiocentesis. Am J Cardiol. 1965;16:722–728.

    Article  CAS  PubMed  Google Scholar 

  44. Callahan JA, Seward JB, Tajik AJ. Cardiac tamponade: pericardiocentesis directed by two-dimensional echocardiography. Mayo Clin Proc. 1985;60:344–347.

    Article  CAS  PubMed  Google Scholar 

  45. Tsang T, El-Najdawi E, Seward JB, et al. Percutaneous echocardiographically guided pericardiocentesis in pediatric patients: evaluation of safety and efficacy. J Am Soc Echocardiogr. 1998;11:1072–1077.

    Article  CAS  PubMed  Google Scholar 

  46. Tsang T, Freeman W, Sinak L, Seward J. Echocardiographically guided pericardiocentesis: evolution and state-of-the-art technique. Mayo Clin Proc. 1998;73:647–652.

    Article  CAS  PubMed  Google Scholar 

  47. Rashkind WJ, Miller WW. Creation of an atrial defect without thoracotomy. A palliative approach to complete transposition of the great arteries. JAMA 1966;196:991–992.

    Article  CAS  Google Scholar 

  48. Rashkind WJ. Balloon atrioseptostomy revisited: the first fifteen years. Int J Cardiol. 1983;4:369–372.

    Article  CAS  PubMed  Google Scholar 

  49. Beitzke A, Stein JI, Suppan C. Balloon atrial septostomy under two-dimensional echocardiographic control. Int J Cardiol. 1991;30:33–42.

    Article  CAS  PubMed  Google Scholar 

  50. Santos J, Grueso J, González A, et al. Atrial septostomy with a balloon catheter under echocardiographic control. Our experience. Revista Española de Cardiologia. 1993;46:816–820.

    CAS  PubMed  Google Scholar 

  51. Allan LD, Leanage R, Wainwright R, et al. Balloon atrial septostomy under two dimensional echocardiographic control. Br Heart J. 1982;47:41–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Perry LW, Ruckman RN, Galioto FM Jr, et al. Echocardiographically assisted balloon atrial septostomy. Pediatrics. 1982;70:403–408.

    CAS  PubMed  Google Scholar 

  53. Pacileo G, Di Salvo G, Limongelli G, et al. Echocardiography in congenital heart disease: usefulness, limits and new techniques. J Cardiovasc Med. 2007;8:17–22.

    Article  Google Scholar 

  54. Weidemann F, Eyskens B, Jamal F, et al. Quantification of regional left and right ventricular radial and longitudinal function in healthy children using ultrasound-based strain rate and strain imaging. J Am Soc Echocardiogr. 2002;15:20–28.

    Article  PubMed  Google Scholar 

  55. King DL, Harrison MR, King DL Jr, et al. Improved reproducibility of left atrial and left ventricular measurements by guided three-dimensional echocardiography. J Am Coll Cardiol. 1992;20:1238–1245.

    Article  CAS  PubMed  Google Scholar 

  56. Siu SC, Rivera JM, Guerrero JL, Handschumacher MD, et al. Three-dimensional echocardiography. In vivo validation for left ventricular volume and function. Circulation. 1993;88:1715–1723.

    Article  CAS  PubMed  Google Scholar 

  57. Jiang L, Vazquez de Prada JA, Handschumacher MD, et al. Three-dimensional echocardiography: in vivo validation for right ventricular free wall mass as an index of hypertrophy. J Am Coll Cardiol. 1994;23:1715–1722.

    Article  CAS  PubMed  Google Scholar 

  58. Gopal AS, Schnellbaecher MJ, Shen Z, et al. Freehand three-dimensional echocardiography for determination of left ventricular volume and mass in patients with abnormal ventricles: comparison with magnetic resonance imaging. J Am Soc Echocardiogr. 1997;10:853–861.

    Article  CAS  PubMed  Google Scholar 

  59. Gopal AS, Keller AM, Rigling R, et al. Left ventricular volume and endocardial surface area by three-dimensional echocardiography: comparison with two-dimensional echocardiography and nuclear magnetic resonance imaging in normal subjects. J Am Coll Cardiol. 1993;22:258–270.

    Article  CAS  PubMed  Google Scholar 

  60. Sapin PM, Schroder KM, Gopal AS, et al. Comparison of two- and three-dimensional echocardiography with cineventriculography for measurement of left ventricular volume in patients. J Am Coll Cardiol. 1994;24:1054–1063.

    Article  CAS  PubMed  Google Scholar 

  61. Nosir YF, Lequin MH, Kasprzak JD, et al. Measurements and day-to-day variabilities of left ventricular volumes and ejection fraction by three-dimensional echocardiography and comparison with magnetic resonance imaging. Am J Cardiol. 1998;82:209–214.

    Article  CAS  PubMed  Google Scholar 

  62. Poutanen T, Ikonen A, Jokinen E, et al. Transthoracic three-dimensional echocardiography is as good as magnetic resonance imaging in measuring dynamic changes in left ventricular volume during the heart cycle in children. Eur J Echocardiogr. 2001;2:31–39.

    Article  CAS  PubMed  Google Scholar 

  63. Qi X, Cogar B, Hsiung MC, et al. Live/real time three-dimensional transthoracic echocardiographic assessment of left ventricular volumes, ejection fraction, and mass compared with magnetic resonance imaging. Echocardiography. 2007;24:166–173.

    Article  PubMed  Google Scholar 

  64. Acar P, Marx GR, Saliba Z, et al. Three-dimensional echocardiographic measurement of left ventricular stroke volume in children: comparison with Doppler method. Pediatr Cardiol. 2001;22:116–120.

    Article  CAS  PubMed  Google Scholar 

  65. Parranon S, Abadir S, Acar P. New insight into the tricuspid valve in Ebstein anomaly using three-dimensional echocardiography. Heart. 2006;92:1627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Acar P, Abadir S, Roux D, et al. Ebstein’s anomaly assessed by real-time 3-D echocardiography. Ann Thorac Surg. 2006;82:731–733.

    Article  PubMed  Google Scholar 

  67. Takahashi K, Guerra V, Roman KS, et al. Three-dimensional echocardiography improves the understanding of the mechanisms and site of left atrioventricular valve regurgitation in atrioventricular septal defect. J Am Soc Echocardiogr. 2006;19:1502–1515.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tissot, C., Singh, Y., Younoszai, A.K., Phelps, C.M. (2020). Echocardiography. In: Munoz, R., Morell, V., da Cruz, E., Vetterly, C., da Silva, J. (eds) Critical Care of Children with Heart Disease . Springer, Cham. https://doi.org/10.1007/978-3-030-21870-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21870-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21869-0

  • Online ISBN: 978-3-030-21870-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics