Skip to main content

The Effects of Cardiopulmonary Bypass Following Pediatric Cardiac Surgery

  • Chapter
  • First Online:
Critical Care of Children with Heart Disease

Abstract

Despite many advances since Gibbon’s first cardiopulmonary bypass (CPB) in 1953, end-organ damage and neurologic dysfunction remain a challenge in the management of pediatric patients undergoing cardiac surgery. A comprehensive understanding of the inflammatory process caused by CPB has led to intraoperative strategies that intend to minimize such responses.

Exposure of blood to the CPB circuit induces a complex systemic inflammatory response (SIRS), which involves the activation of multiple, interdependent cellular and humoral pathways. The coagulation and complement pathways are activated when the plasmatic proteins are exposed to the circuit material. Once cellular activation occurs, released proinflammatory cytokines, adhesion molecules, and chemokines are responsible for the amplification of the inflammatory cascade.

Each of the inflammatory cascade components has an important role in a process that ultimately results in vascular injury and end-organ damage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bronicki R, Hall M, Cardiopulmonary bypass-induced inflammatory response: pathophysiology and treatment. Pediatric Critical Care Medicine. 2016;17(8_suppl):S272-S278.

    Article  PubMed  Google Scholar 

  2. Gravlee G, Davis R, Stammers A, Ungerleider R. Cardiopulmonary Bypass. Philadelphia: Lippincott Williams & Wilkins; 2008

    Google Scholar 

  3. Kozik DJ, Tweddell JS. Characterizing the inflammatory response to cardiopulmonary bypass in children. Ann Thorac Surg. 2006;81(6):S2347–54. Review.

    Article  PubMed  Google Scholar 

  4. Wan S, LeClerc JL, Vincent JL. Inflammatory response to cardiopulmonary bypass mechanisms involved and possible therapeutic strategies. Chest. 1997;112:676–692.

    Article  CAS  PubMed  Google Scholar 

  5. Brix-Christensen V. The systemic inflammatory response after cardiac surgery with cardiopulmonary bypass in children. Acta Anaesthesiol Scand. 2001;45:671–667.

    Article  CAS  PubMed  Google Scholar 

  6. Madhok A, Viraga OK, Haridas V, Parnell V, Savita P. Cytokine response in children undergoing surgery for congenital heart disease. Pediatr Cardiol. 2006;27:408–413.

    Article  PubMed  Google Scholar 

  7. Chong A, Hampton CR, Edward D. Verrier microvascular inflammatory response in cardiac surgery. Semin Cardiothorac Vasc Anesth. 2003;7:333.

    Article  Google Scholar 

  8. Hall RI. Cardiopulmonary bypass and the systemic inflammatory response: effects on drug action. J Cardiothorac Vasc Anesth. 2002;16:83–98.

    Article  PubMed  Google Scholar 

  9. Jaggers J, Lawson JH. Coagulopathy and inflammation in neonatal heart surgery: mechanisms and strategies. Ann Thorac Surg. 2006;81:S2360–S2366.

    Article  PubMed  Google Scholar 

  10. Cuccurullo L, Accardo M, Agozzino L, Blasi F, Esposito S, Vosa C. Ultrastructural pathology of pediatric myocardium in acute ischemia: bioptic study before and after treatment with cardioplegic solution. Ultrastruct Pathol. 2006;30:453–460.

    Article  CAS  PubMed  Google Scholar 

  11. Hsia TY, Gruber PJ. Factors influencing neurologic outcome after neonatal cardiopulmonary bypass: what we can and cannot control. Ann Thorac Surg. 2006;81:S2381–S2388.

    Article  PubMed  Google Scholar 

  12. Gaynor JW, Wernovsky G, Jarvik GP, Bernbaum J, Gerdes M, et al. Patient characteristics are important determinants of neurodevelopmental outcome at one year of age after neonatal and infant cardiac surgery. J Thorac Cardiovasc Surg. 2007;133:1344–1353.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Markowitz SD, Ichord RN, Wernovsky G, Gaynor JW, Nicolson SC. Surrogate markers for neurological outcome in children after deep hypothermic circulatory arrest. Semin Cardiothorac Vasc Anesth. 2007;11:59–65.

    Article  PubMed  Google Scholar 

  14. Matte G. Perfusion for Congenital Heart Surgery. Notes on Cardiopulmonary Bypass for a Complex Patient Population. Boston, MA: Wiley Blackwell; 2015

    Google Scholar 

  15. Durandy Y, Minimizing systemic inflammation during cardiopulmonary bypass in the pediatric population Artif Organs. 2014 Jan;38(1):11–8.

    Article  CAS  PubMed  Google Scholar 

  16. Pigula FA, Gandhi SK, Davis PJ, Webber SA, Nemato EM. Regional low-flow perfusion provides somatic circulatory support during neonatal aortic arch surgery. Ann Thorac Surg. 2001;72(2):406–407.

    Article  Google Scholar 

  17. Wypij D, Newburger JW, Rappaport LA, duPlessis AJ, Jonas RA, Wernovsky G, Lin M, Bellinger DC. The effect of duration of deep hypothermic circulatory arrest in infant heart surgery on late neurodevelopment: the Boston Circulatory Arrest Trial. J Thorac Cardiovasc Surg. 2003 Nov;126(5):1397–403

    Article  PubMed  Google Scholar 

  18. Dahlbacka S, Alaoja H, Mäkelä J, Niemelä E, Laurila P, Kiviluoma K, Honkanen A, Ohtonen P, Anttila V, Juvonen T. Effects of pH management during selective antegrade cerebral perfusion on cerebral microcirculation and metabolism: alpha-stat versus pH-stat. Ann Thorac Surg. 2007; 84:847–855.

    Article  PubMed  Google Scholar 

  19. Halstead JC, Spielvogel D, Meier DM, et al. Optimal pH strategy for selective cerebral perfusion. Eur J Cardiothorac Surg. 2005;28:266–273.

    Article  PubMed  Google Scholar 

  20. Bellinger DC, Wypij D, AJ Du plessis, Rappaport LA, et al. Developmental and neurologic effects of alpha-stat versus pH-stat strategies for deep hypothermic cardiopulmonary bypass in infants. J Thorac Cardiovasc Surg. 2001;121:374–383.

    Article  CAS  PubMed  Google Scholar 

  21. Jonas RA, Wypij D, Roth SJ, et al. The influence of hemodilution on outcome after hypothermic cardiopulmonary bypass: results of a randomized trial in infants. J Thorac Cardiovasc Surg. 2003;126:1765–1774

    Article  PubMed  Google Scholar 

  22. Hensley F, Martin D, Gravlee G. A Practical Approach to Cardiac Anesthesia. Philadelphia, PA: Lippincott Williams & Wilkins; 2013.

    Google Scholar 

  23. Mongero L, Beck J. On Bypass: Advanced Perfusion Techniques. Totowa, NJ: Humana Press; 2008.

    Book  Google Scholar 

  24. AmSECT. American Society of Extracorporeal Technology Standards and Guidelines for Perfusion Practice. 2017.

    Google Scholar 

  25. Boettcher W, Dehmel F, Redlin M, Miera O, Musci M, Cho M, Photiadis J. Complex cardiac surgery on patients with a body weight of less than 5 kg without donor blood transfusion. J Extra Corpor Technol. 2017;49:93–97

    PubMed  PubMed Central  Google Scholar 

  26. Ratliff T, Hodge A, Preston T, Galantowicz M, Naguib A, Gomez D. Bloodless pediatric cardiopulmonary bypass for a 3.2-kg patient whose parents are of Jehovah’s witness faith. J Extra Corpor Technol. 2014;46:173–176.

    PubMed  PubMed Central  Google Scholar 

  27. Olshove V, Berndsen N, Sivarajan V, Nawathe P, Phillips A. Comprehensive blood conservation program in a new congenital cardiac surgical program allows bloodless surgery for the Jehovah Witness and a reduction for all patients. Perfusion. 10/6/17: https://doi.org/10.1177/0267659117733810.

  28. Kaplan J, Augoustides G, Manecke G, Maus T, Reich D. Kaplan’s Cardiac Anesthesia for Cardiac and Noncardiac Surgery. Philadelphia: Elsevier; 2017.

    Google Scholar 

  29. Rath T, Sutton R, Ploessl J. A comparison of static occlusion setting: fluid drop rate and pressure drop. J Extra Corpor Technol. 1996;28:21–26.

    Google Scholar 

  30. McRobb C, Mejak B, Ellis C, Lawson S, Twite M. Recent advances in pediatric cardiopulmonary bypass. Perfusion. 2014, Vol. 18(2) 153–160.

    Google Scholar 

  31. Jabur G, Sidhu K, Willcox T, Mitchell S. Clinical evaluation of emboli removal by integrated versus non-integrated arterial filters in new generation oxygenators. Perfusion. 2016, Vol. 31(5) 409–417.

    Article  PubMed  Google Scholar 

  32. Strother A,Wang S, Kunselman A, Ündar A. Handling ability of gaseous microemboli of two pediatric arterial filters in a simulated CPB model. Perfusion. 2013, 28(3) 244–252.

    Article  CAS  PubMed  Google Scholar 

  33. Potger K, McMillan D, Ambrose M. Air transmission comparison of the affinity fusion oxygenator with an integrated arterial filter to the affinity NT oxygenator with a separate arterial filter. J Extra Corpor Technol. 2014;46:229–238.

    PubMed  PubMed Central  Google Scholar 

  34. Stanzel R, Henderson M. An in vitro evaluation of gaseous microemboli handling by contemporary venous reservoirs and oxygenator systems using EDAC. Perfusion. 2016, Vol. 31(1) 38–44.

    Article  CAS  PubMed  Google Scholar 

  35. Meyers G. Understanding off-label use and reference blood flows in modern membrane oxygenators. J Extra Corpor Technol. 2014;49:93–97.

    Google Scholar 

  36. Venema L, Sharma A, Simons A, Bekers O, Weerwind P. Contemporary oxygenator design relative to hemolysis. J Extra Corpor Technol. 2014;46:212–216.

    PubMed  PubMed Central  Google Scholar 

  37. Schweiger M, Dave H, Kelly J, Hubler M. Strategic and operational aspects of a transfusion-free neonatal arterial switch operation. Interact Cardiovasc Thorac Surg. 2013;16: 890–891.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wypij D, Jonas R, Bellinger D, Del Nido P, Mayer J, Bacha E, Forbess J, Pigula F, Laussen P, Newburger J. The effect of hematocrit during hypothermic cardiopulmonary bypass in infant heart surgery: results from the combined Boston hematocrit trials. J. Thorac & Cardiovasc Surg. 2007;135:355–360

    Article  Google Scholar 

  39. Bronson S, Riley J, Blessing J, Ereth M, Dearani J. Prescriptive patient extracorporeal circuit and oxygenator sizing reduces hemodilution and allogeneic blood product transfusion during adult cardiac surgery. J Extra Corpor Technol. 2013;45:167–172.

    PubMed  PubMed Central  Google Scholar 

  40. Naik S, Knight A, Elliott M. A successful modification of ultrafiltration for cardiopulmonary bypass in children. Perfusion. 1991; 6:41–50.

    Article  CAS  PubMed  Google Scholar 

  41. Thapmongkol S, Masaratana P, Subtaweesin T, Sayasathid J, Thatsakorn K, Namchaisiri J. The effects of modified ultrafiltration on clinical outcomes of adult and pediatric cardiac surgery. Asian Biomedicine. 2015;9:591–599.

    Article  Google Scholar 

  42. Valleley MS, Buckley KW, Hayes KM, Fortuna RR, Geiss DM, Holt DW. Are there benefits to a fresh whole blood vs. packed red blood cell cardiopulmonary bypass prime on outcomes in neonatal and pediatric cardiac surgery? J Extra Corpor Technol. 2007;39:168–176.

    PubMed  PubMed Central  Google Scholar 

  43. Bianchi P, Cotza M, Beccaris C, Silvetti S, Isgro G, Pome G, Giamberti A, Ranucci M, For the Surgical and Clinical Outcome Researcg (SCORE) Group. Early or late fresh frozen plasma administration in newborns and small infants undergoing cardiac surgery: the APPEAR randomized trial. British J Anes. 2017;118(5):788–796

    Article  CAS  Google Scholar 

  44. Vohra HA, Adluri K, Willets R, Horsburgh A, Barron DJ, Brawn WJ. Changes in potassium concentration and haematocrit associated with cardiopulmonary bypass in paediatric cardiac surgery. Perfusion. 2007;22:92.

    Article  Google Scholar 

  45. Golab HD, Takkenberg JJ, van Gerner-Weelink GL, et al. Effects of cardiopulmonary bypass circuit reduction and residual volume salvage on allogeneic transfusion requirements in infants undergoing cardiac surgery. Interact Cardiovasc Thorac Surg. 2007;6:335–339.

    Article  PubMed  Google Scholar 

  46. Mou SS, Giroir BP, Molitor-Kirsch EA, et al. Fresh whole blood versus reconstituted blood for pump priming in heart surgery in infants. N Engl J Med. 2004;351:1635–1644.

    Article  CAS  PubMed  Google Scholar 

  47. Schroth M, Plank C, Meibner U, et al. Hypertonic-hyperoncotic solutions improve cardiac function in children after open-heart surgery. Pediatrics. 2006;118:e76–e84.

    Article  PubMed  Google Scholar 

  48. Alkan T, Akçevin A, Undar A, Türkoglu H, Paker T, Aytaç A. Pulsatile perfusion during cardiopulmonary bypass procedures in neonates, infants, and small children. ASAIO J. 2007;53:706–709.

    Article  Google Scholar 

  49. Guzzetta NA, Miller BE, Todd K, et al. Clinical measures of heparin’s effect and thrombin inhibitor levels in pediatric patients with congenital heart disease. Anesth Analg. 2006;103:1131–1138.

    PubMed  Google Scholar 

  50. Owings JT, Pollock ME, Gosselin RC, Ireland K, Jahr JS, Larkin EC. Anticoagulation of children undergoing cardiopulmonary bypass is overestimated by current monitoring techniques. Arch Surg. 2000;135:1042–1047.

    Article  CAS  PubMed  Google Scholar 

  51. Polito A, Ricci Z, Di Chiara L, et al. Cerebral blood flow during cardiopulmonary bypass in pediatric cardiac surgery: the role of transcranial Doppler - a systematic review of the literature. Cardiovasc Ultrasound. 2006;4:47.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Chan KL, Summerhayes RG, Ignjatovic V, Horton SB, Monagle PT. Reference values for kaolin-activated thromboelastography in healthy children. Anesthesia and Analgesia. 2007;105:1610–1613.

    Article  PubMed  Google Scholar 

  53. Williams GD, Ramamoorthy C. Brain monitoring and protection during pediatric cardiac surgery. Semin Cardiothorac Vasc Anesth. 2007;11:23.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Maria Manrique .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manrique, A.M., Vargas, D.P., Palmer, D., Kelly, K., Litchenstein, S.E. (2020). The Effects of Cardiopulmonary Bypass Following Pediatric Cardiac Surgery. In: Munoz, R., Morell, V., da Cruz, E., Vetterly, C., da Silva, J. (eds) Critical Care of Children with Heart Disease . Springer, Cham. https://doi.org/10.1007/978-3-030-21870-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21870-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21869-0

  • Online ISBN: 978-3-030-21870-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics