Skip to main content

Horizontal Gene Transfer Between Bacteriophages and Bacteria: Antibiotic Resistances and Toxin Production

  • Chapter
  • First Online:

Abstract

Antibiotic resistance genes (ARGs) are ubiquitous among microorganisms living in a wide variety of environments and can be detected by several molecular techniques. Similarly, toxins and genes encoding toxins are also widespread among organisms. Bacteriophages are bacterial viruses found wherever bacteria exist, and their concentration is particularly high in aquatic environments. The age of the “omics” truly revolutionized this field, establishing the phylogenetic affiliation and function of phages, as well as the role they play in microbial communities and horizontal transfer of bacterial genes. Genomics, transcriptomics, proteomics, and metabolomics have highlighted the role of phages and their interaction with bacterial populations. It is now generally accepted that horizontal gene transfer regularly occurs between bacteriophages and their hosts, either by generalized or specialized transductions or possibly by controlling certain bacterial populations of donors or recipients. This means that phages not only play a major role driving bacterial evolution but also influence their own evolution. Phage infection can result in the bacterial host quickly acquiring (or loosing) novel genes and thus biochemical properties, a process otherwise extremely slow that usually requires long periods of time. This chapter will focus on the role of bacteriophages in the transfer of both antibiotic resistance genes and genes encoding novel toxins to new bacterial species. This knowledge is essential not only to understand the current challenges experienced in medicine but also to prevent, or at least lessen, future clinically relevant threats resulting from gene transfer between microorganisms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abraham EP, Chain E (1940) An enzyme from bacteria able to destroy penicillin. Nature 46:837–837

    Article  Google Scholar 

  • Ackermann HW (2009) Phage classification and characterization. Methods Mol Biol 501:127–140

    Article  CAS  PubMed  Google Scholar 

  • Adams MJ, Carstens EB (2012) Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses. Arch Virol 157:1411–1422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aertsen A, Faster D, Michiels CW (2005) Induction of Shiga toxin-converting prophage in Escherichia coli by high hydrostatic pressure. Appl Environ Microbiol 71:1155–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alexander HE, Leidy G (1947) Mode of action of streptomycin on type b Haemophilus influenzae: I. Origin of resistant organisms. J Exp Med 85:329–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anand N, Davis BD, Armitage AK (1960) Uptake of streptomycin by Escherichia coli. Nature 185:23–24

    Article  CAS  PubMed  Google Scholar 

  • Andersson SG, Zomorodipour A, Andersson JO, Sicheritz-Pontén T, Alsmark UC, Podowski RM, Näslund AK, Eriksson AS, Winkler HH, Kurland CG (1998) The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396:133–140

    Article  CAS  PubMed  Google Scholar 

  • Ashkenazi A (2010) Botulinum toxin type A for chronic migraine. Curr Neurol Neurosci Rep 10:140–146

    Article  CAS  PubMed  Google Scholar 

  • Avery OT, MacLeod CM, McCarty M (1944) Studies on the chemical nature of the substance inducing transformation in pneumococcal types. J Exp Med 79:137–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bacciu D, Falchi G, Spazziani A, Bossi L, Marogna G, Leori GS, Rubino S, Uzzau S (2004) Transposition of the heat-stable toxin astA gene into a Gifsy-2-related prophage of Salmonella enterica serovar Abortusovis. J Bacteriol 186:4568–4574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balcazar JL (2014) Bacteriophages as vehicles for antibiotic resistance genes in the environment. PLoS Pathog 10(7):e1004219

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Banks DJ, Beres SB, Musser JM (2002) The fundamental contribution of phages to GAS evolution, genome diversification and strain emergence. Trends Microbiol 10:515–521

    Article  CAS  PubMed  Google Scholar 

  • Bar D (2011) Evidence of massive horizontal gene transfer between humans and Plasmodium vivax. Nat Preced. https://doi.org/10.1038/npre.2011.5690.1

  • Barash JR, Arnon SS (2014) A novel strain of Clostridium botulinum that produces type B and type H botulinum toxins. J Infect Dis 209:183–191

    Article  CAS  PubMed  Google Scholar 

  • Barber M, Burston J (1955) Antibiotic-resistant staphylococcal infection; a study of antibiotic sensitivity in relation to bacteriophage types. Lancet 269:578–583

    Article  CAS  PubMed  Google Scholar 

  • Barbian KD, Minnick MF (2000) A bacteriophage-like particle from Bartonella bacilliformis. Microbiology 146:599–609

    Article  CAS  PubMed  Google Scholar 

  • Basak K, Majumdar SK (1973) Utilization of carbon and nitrogen sources by Streptomyces kanamyceticus for kanamycin production. Antimicrob Agents Chemother 4:6–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell CE, Eisenberg D (1997) Crystal structure of nucleotide-free diphtheria toxin. Biochemistry 36:481–488

    Article  CAS  PubMed  Google Scholar 

  • Beres SB, Sylva GL, Barbian KD, Lei B, Hoff JS, Mammarella ND, Liu MY, Smoot JC, Porcella SF, Parkins LD, Campbell DS, Smith TM, McCormick JK, Leung DY, Schlievert PM, Musser JM (2002) Genome sequence of a serotype M3 strain of group A Streptococcus: phage-encoded toxins, the high-virulence phenotype, and clone emergence. Proc Natl Acad Sci USA 99:10078–10083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Betley MJ, Mekalanos JJ (1985) Staphylococcal enterotoxin A is encoded by phage. Science 229:185–187

    Article  CAS  PubMed  Google Scholar 

  • Beumer A, Robinson JB (2005) A broad-host-range, generalized transducing phage (SN-T) acquires 16S rRNA genes from different genera of bacteria. Appl Environ Microbiol 71:8301–8304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beutin L, Strauch E, Fischer I (1999) Isolation of Shigella sonnei lysogenic for a bacteriophage encoding gene for production of Shiga toxin. Lancet 353:1498

    Article  CAS  PubMed  Google Scholar 

  • Bielaszewska M, Prager R, Köck R, Mellmann A, Zhang W, Tschäpe H, Tarr PI, Karch H (2007) Shiga toxin gene loss and transfer in vitro and in vivo during enterohemorrhagic Escherichia coli O26 infection in humans. Appl Environ Microbiol 73:3144–3150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Billard-Pomares T, Fouteau S, Jacquet ME, Roche D, Barbe V, Castellanos M, Bouet JY, Cruveiller S, Médigue C, Blanco J, Clermont O, Denamur E, Branger C (2014) Characterization of a P1-like bacteriophage carrying an SHV-2 extended-spectrum β-lactamase from an Escherichia coli strain. Antimicrob Agents Chemother 58:6550–6557

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bingel KF (1949) Neue Untersuchungen zur Scharlachatiologie. Deutsch. Med Wosh 127:703–706

    Google Scholar 

  • Blahová J, Hupková M, Krcméry V Sr (1994) Phage F-116 transduction of antibiotic resistance from a clinical isolate of Pseudomonas aeruginosa. J Chemother 6:184–188

    Article  PubMed  Google Scholar 

  • Blahová J, Králiková K, Krcméry V Sr, Mlynarcík D, Trupl J (1997) Transduction of antibiotic resistance including imipenem resistance by wild type phages from nosocomial strains of Pseudomonas aeruginosa. Acta Virol 41:293–296

    PubMed  Google Scholar 

  • Blair JE, Carr M (1961) Lysogeny in staphylococci. J Bacteriol 82:984–993

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blakely GW (2004) Smarter than the average phage. Mol Microbiol 54:851–854

    Article  CAS  PubMed  Google Scholar 

  • Boakes E, Kearns AM, Ganner M, Perry C, Hill RL, Ellington MJ (2011) Distinct bacteriophages encoding Panton-Valentine leukocidin (PVL) among international methicillin-resistant Staphylococcus aureus clones harboring PVL. J Clin Microbiol 49:684–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Botka T, Růžičková V, Konečná H, Pantůček R, Rychlík I, Zdráhal Z, Petráš P, Doškař J (2015) Complete genome analysis of two new bacteriophages isolated from impetigo strains of Staphylococcus aureus. Virus Genes 51:122–131

    Article  CAS  PubMed  Google Scholar 

  • Boyd EF (2010) Efficiency and specificity of CTXϕ chromosomal integration: dif makes all the difference. Proc of the Natl Acad Sci USA 107:3951–3952

    Article  CAS  Google Scholar 

  • Boyd EF, Moyer KE, Shi L, Waldor MK (2000) Infectious CTXϕ and the vibrio pathogenicity island prophage in Vibrio mimicus: evidence for recent horizontal transfer between V. mimicus and V. cholerae. Infect Immun 68:1507–1513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyd EF, Davis BM, Hochhut B (2001) Bacteriophage-bacteriophage interactions in the evolution of pathogenic bacteria. Trends Microbiol 9:137–144

    Article  CAS  PubMed  Google Scholar 

  • Bräu B, Piepersberg W (1983) Cointegrational transduction and mobilization of gentamicin resistance plasmid pWP14a is mediated by IS140. Mol Gen Genet 189:298–303

    Article  PubMed  Google Scholar 

  • Broutet N, Marais A, Lamouliatte H, de Mascarel A, Samoyeau R, Salamon R, Mégraud F (2001) cagA status and eradication treatment outcome of anti-Helicobacter pylori triple therapies in patients with nonulcer dyspepsia. J Clin Microbiol 39:1319–1322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown-Jaque M, Calero-Cáceres W, Muniesa M (2015) Transfer of antibiotic-resistance genes via phage-related mobile elements. Plasmid 79:1–7

    Article  CAS  PubMed  Google Scholar 

  • Brüggemann H, Gottschalk G (2004) Insights in metabolism and toxin production from the complete genome sequence of Clostridium tetani. Anaerobe 10:53–68

    Article  PubMed  CAS  Google Scholar 

  • Brüggemann H, Baumer S, Fricke WF, Wiezer A, Liesegang H, Decker I, Herzberg C, Martinez-Arias R, Merkl R, Henne A, Gottschalk G (2003) The genome sequence of Clostridium tetani, the causative agent of tetanus disease. Proc Natl Acad Sci USA 100:1316–1321

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Burgen AS, Dickens F, Zatman LJ (1949) The action of botulinum toxin on the neuro-muscular junction. J Physiol 109:10–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burns D (1988) Subunit structure and enzymic activity of pertussis toxin. Microbiol Sci 5:285–287

    CAS  PubMed  Google Scholar 

  • Bush K, Jacoby GA (2010) Updated functional classification of beta-lactamases. Antimicrob Agents Chemother 54:969–976

    Article  CAS  PubMed  Google Scholar 

  • Bush K, Jacoby GA, Medeiros AA (1995) A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother 39:1211–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bushara KO, Park DM (1994) Botulinum toxin and sweating. J Neurol Neurosurg Psychiatry 57:1437–1438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cairns J, Becks L, Jalasvuori M, Hiltunen T (2017) Sublethal streptomycin concentrations and lytic bacteriophage together promote resistance evolution. Philos Trans R Soc Lond B Biol Sci 372. pii: 20160040

    Article  CAS  Google Scholar 

  • Campos J, Martínez E, Izquierdo Y, Fando R (2010) VEJϕ, a novel filamentous phage of Vibrio cholerae able to transduce the cholera toxin genes. Microbiology 156:108–115

    Article  CAS  PubMed  Google Scholar 

  • Canchaya C, Proux C, Fournous G, Bruttin A, Brussow H (2003) Prophage genomics. Microbiol Mol Biol Rev 67:238–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casas V, Magbanua J, Sobrepeña G, Kelley ST, Maloy SR (2010) Reservoir of bacterial exotoxin genes in the environment. Int J Microbiol 2010:754368. https://doi.org/10.1155/2010/754368

    Article  CAS  PubMed  Google Scholar 

  • Chakrabarti SL, Gorini L (1975) Growth of bacteriophages MS2 and T7 on streptomycin-resistant mutants of Escherichia coli. J Bacteriol 121:670–674

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chakrabarty AM, Gunsalus IC (1970) Transduction and genetic homology between Pseudomonas species putida and aeruginosa. J Bacteriol 103:830–832

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chan CX, Beiko RG, Ragan MA (2011) Lateral transfer of genes and gene fragments in Staphylococcus extends beyond mobile elements. J Bacteriol 193:3964–3977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chart H, Row B, Threlfall EJ, Ward LR (1989) Conversion of Salmonella enteritidis phage type 4 to phage type 7 involves loss of lipopolysaccharide with concomitant loss of virulence. FEMS Microbiol Lett 51:37–40

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Novick RP (2009) Phage-mediated intergeneric transfer of toxin genes. Science 323:139–141

    Article  CAS  PubMed  Google Scholar 

  • Coetzee JN (1974) High frequency transduction of kanamycin resistance in Proteus mirabilis. J Gen Microbiol 84:285–296

    Article  CAS  PubMed  Google Scholar 

  • Coetzee JN (1975) Specialized transduction of kanamycin resistance in a Providence strain. J Gen Microbiol 88:307–316

    Article  CAS  PubMed  Google Scholar 

  • Coetzee JN (1976) Derivation and properties of Proteus mirabilis systems for high frequency transduction of streptomycin-sulphonamide and streptomycin-sulphonamide-kanamycin resistances. J Gen Microbiol 96:95–107

    Article  PubMed  Google Scholar 

  • Coetzee JN, Datta N, Hedges RW, Appelbaum PC (1973) Transduction of R factors in Proteus mirabilis and P. rettgeri. J Gen Microbiol 76:355–368

    Article  CAS  PubMed  Google Scholar 

  • Cohen S, Sweeney HM (1973) Effect of the prophage and penicillinase plasmid of the recipient strain upon the transduction and the stability of methicillin resistance in Staphylococcus aureus. J Bacteriol 116:803–811

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coleman DC, Sullivan DJ, Russell RJ, Arbuthnott JP, Carey BF, Pomeroy HM (1989) Staphylococcus aureus bacteriophages mediating the simultaneous lysogenic conversion of beta-lysin, staphylokinase and enterotoxin A: molecular mechanism of triple conversion. J Gen Microbiol 135:1679–1697

    CAS  PubMed  Google Scholar 

  • Cook WL, Wachsmuth K, Johnson SR, Birkness KA, Samadi AR (1984) Persistence of plasmids, cholera toxin genes, and prophage DNA in classical Vibrio cholerae O1. Infect Immun 45:222–226

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cossart P (1988) The listeriolysin O gene: a chromosomal locus crucial for the virulence of Listeria monocytogenes. Infection 16:S157–S159

    Article  CAS  PubMed  Google Scholar 

  • Cox EC, Whitet JR, Flakst JG (1964) Streptomycin action and the ribosome. Proc Natl Acad Sci 51:703–709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Craigie J, Yen CH (1938) The demonstration of types of B. typhosus by means of preparations of type 11 phage. Canad Publ Health J 29:448–484

    Google Scholar 

  • Datta N, Kontomichalou P (1965) Penicillinase synthesis controlled by infectious R factors in Enterobacteriaceae. Nature 208:239–241

    Article  CAS  PubMed  Google Scholar 

  • Datta N, Hedges RW, Shaw EJ, Sykes R, Richmond MH (1971) Properties of an R factor from Pseudomonas aeroginosa. J Bacteriol 108:1244–1249

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davies J, Brzezinska M, Benviste R (1971) The problems of drug-resistant pathogenic bacteria. R factors: biochemical mechanisms of resistance to aminoglycoside antibiotics. Ann NY Acad Sci 182:226–233

    Article  CAS  PubMed  Google Scholar 

  • Davis BM, Lawson EH, Sandkvist M, Ali A, Sozhamannan S, Waldor MK (2000) Convergence of the secretory pathways for cholera toxin and the filamentous phage, CTXϕ. Science 288:333–335

    Article  CAS  PubMed  Google Scholar 

  • de Bernard M, Arico B, Papini E, Rizzuto R, Grandi G, Rappuoli R, Montecucco C (1997) Helicobacter pylori toxin VacA induces vacuole formation by acting in the cell cytosol. Mol Microbiol 26:665–674

    Article  PubMed  Google Scholar 

  • de la Cruz F, Davies J (2000) Horizontal gene transfer and the origin of species: lessons from bacteria. Trends Microbiol 8:128–133

    Article  PubMed  Google Scholar 

  • Dearborn AD, Dokland T (2012) Mobilization of pathogenicity islands by Staphylococcus aureus strain Newman bacteriophages. Bacteriophage 2:70–78

    Article  PubMed  PubMed Central  Google Scholar 

  • Demerec M (1945) Production of Staphylococcus strains resistant to various concentrations of penicillin. Proc Natl Acad Sci USA 31:16–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dempsey RM, Carroll D, Kong H, Higgins L, Keane CT, Coleman DC (2005) Sau42I, a BcgI-like restriction-modification system encoded by the Staphylococcus aureus quadruple-converting phage Phi42. Microbiology 151:1301–1311

    Article  CAS  PubMed  Google Scholar 

  • Dinges MM, Orwin PM, Schlievert PM (2000) Exotoxins of Staphylococcus aureus. Clin Microbiol Rev 13:16–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Döpfer D, Sekse C, Beutin L, Solheim H, van der Wal FJ, de Boer A, Slettemeås JS, Wasteson Y, Urdahl AM (2010) Pathogenic potential and horizontal gene transfer in ovine gastrointestinal Escherichia coli. J Appl Microbiol 108:1552–1562

    Article  PubMed  CAS  Google Scholar 

  • Dover N, Barash JR, Hill KK, Xie G, Arnon SS (2014) Molecular characterization of a novel botulinum neurotoxin type H gene. J Infect Dis 209:192–202

    Article  CAS  PubMed  Google Scholar 

  • Downard JS (1988) Tn5-mediated transposition of plasmid DNA after transduction to Myxococcus xanthus. J Bacteriol 170:4939–4941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drabble WT, Stocker BA (1968) R (transmissible drug-resistance) factors in Salmonella typhimurium: pattern of transduction by phage P22 and ultraviolet-protection effect. J Gen Microbiol 53:109–123

    Article  CAS  PubMed  Google Scholar 

  • Dumke R, Schröter-Bobsin U, Jacobs E, Röske I (2006) Detection of phages carrying the Shiga toxin 1 and 2 genes in waste water and river water samples. Lett Appl Microbiol 42:48–53

    Article  CAS  PubMed  Google Scholar 

  • Eagle H (1954) The multiple mechanisms of penicillin resistance. J Bacteriol 68:610–616

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eberth CJ (1880) Die Organismen in den Organen bei Typhus abdominalis. Virchows Archiv Path Anat 81:58–73

    Article  Google Scholar 

  • Eggers CH, Gray CM, Preisig AM, Glenn DM, Pereira J, Ayers RW, Alshahrani M, Acabbo C, Becker MR, Bruenn KN, Cheung T, Jendras TM, Shepley AB, Moeller JT (2016) Phage-mediated horizontal gene transfer of both prophage and heterologous DNA by ϕBB-1, a bacteriophage of Borrelia burgdorferi. Pathog Dis 74. pii: ftw107

    Google Scholar 

  • Ehara M, Shimodori S, Kojima F, Ichinose Y, Hirayama T, Albert MJ, Supawat K, Honma Y, Iwanaga M, Amako K (1997) Characterization of filamentous phages of Vibrio cholerae O139 and O1. FEMS Microbiol Lett 154:293–301

    Article  CAS  PubMed  Google Scholar 

  • Eklund MW, Poysky FT (1974) Interconversion of type C and D strains of Clostridium botulinum by specific bacteriophages. Appl Microbiol 27:251–258

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eklund MW, Poysky FT, Boatman ES (1969) Bacteriophages of Clostridium botulinum types A, B, E, and F and nontoxigenic strains resembling type E. J Virol 3:270–274

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eklund MW, Poysky FT, Reed SM, Smith CA (1971) Bacteriophages and the toxigenicity of Clostridium botulinum type C. Science 172:480–482

    Article  CAS  PubMed  Google Scholar 

  • Eklund MW, Poysky FT, Reed SM (1972) Bacteriophage and the toxigenicity of Clostridium botulinum type D. Nat New Biol 235:16–17

    Article  CAS  PubMed  Google Scholar 

  • Eklund MW, Poysky FT, Peterson ME, Meyers JA (1976) Relationship of bacteriophages to alpha toxin production in Clostridium novyi types A and B. Infect Immun 14:793–803

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eklund MW, Poysky FT, Mseitif LM, Strom MS (1988) Evidence for plasmid-mediated toxin and bacteriocin production in Clostridium botulinum type G. Appl Environ Microbiol 54:1405–1408

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eltringham IJ, Wilson SM, Drobniewski FA (1999) Evaluation of a bacteriophage-based assay (phage amplified biologically assay) as a rapid screen for resistance to isoniazid, ethambutol, streptomycin, pyrazinamide, and ciprofloxacin among clinical isolates of Mycobacterium tuberculosis. J Clin Microbiol 37:3528–3532

    CAS  PubMed  PubMed Central  Google Scholar 

  • Emmart EW (1945) The tuberculostatic action of streptothricin and streptomycin with special reference to the action of streptomycin on the chorioallantoic membrane of the chick embryo. Public Health Rep 60:1415–1421

    Article  CAS  PubMed  Google Scholar 

  • Enault F, Briet A, Bouteille L, Roux S, Sullivan MB, Petit MA (2017) Phages rarely encode antibiotic resistance genes: a cautionary tale for virome analyses. ISME J 11:237–247

    Article  CAS  PubMed  Google Scholar 

  • Erbguth FJ, Naumann M (1999) Historical aspects of botulinum toxin: Justinus Kerner (1786–1862) and the “sausage poison”. Neurology 53:1850–1853

    Article  CAS  PubMed  Google Scholar 

  • Erdos T, Ullmann A (1959) Effect of streptomycin on the incorporation of amino-acids labelled with carbon-14 into ribonucleic acid and protein in a cell-free system of a Mycobacterium. Nature 183:618–619

    Article  CAS  PubMed  Google Scholar 

  • Euler CW, Juncosa B, Ryan PA, Deutsch DR, McShan WM, Fischetti VA (2016) Targeted curing of all lysogenic bacteriophage from Streptococcus pyogenes using a novel counter-selection technique. PLoS One 11:e0146408

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Faruque SM, Rahman MM, Asadulghani, Nasirul Islam KM, Mekalanos JJ (1999) Lysogenic conversion of environmental Vibrio mimicus strains by CTXϕ. Infect Immun 67:5723–5729

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fleming RS, Queen FB (1946) Penicillin resistance; of bacteria; strain variations in penicillin sensitivity among bacterial species encountered in war wounds and infections. Am J Clin Pathol 16:63–65

    Article  CAS  PubMed  Google Scholar 

  • Foley GE (1947) In Vitro resistance of the genus Bacteroides to streptomycin. Science 106:423–424

    Article  CAS  PubMed  Google Scholar 

  • Fox JG, Soave OA (1971) Pneumococcic meningoencephalitis in a rhesus monkey. J Am Vet Med Assoc 159:1595–1597

    CAS  PubMed  Google Scholar 

  • Freeman VJ (1951) Studies on the virulence of bacteriophage-infected strains of Corynebacterium diphtheriae. J Bacteriol 61:675–688

    CAS  PubMed  PubMed Central  Google Scholar 

  • Friedman D, Court D (2001) Bacteriophage lambda: alive and well and still doing its thing. Curr Opin Microbiol 4:201–207

    Article  CAS  PubMed  Google Scholar 

  • Frobisher M Jr, Brown JH (1927) Transmissible toxicogenicity of streptococci. Bull Johns Hopkins Hosp 41:167–173

    Google Scholar 

  • Fujii N, Oguma K, Yokosawa N, Kimura K, Tsuzuki K (1988) Characterization of bacteriophage nucleic acids obtained from Clostridium botulinum types C and D. Appl Environ Microbiol 54:69–73

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fuller NA, Staub AM (1968) Immunochemical studies on Salmonella. 13. Chemical changes appearing on the specific polysaccharide of S. cholerae suis after its conversion by phage 14. Eur J Biochem 4:286–300

    Article  CAS  PubMed  Google Scholar 

  • Gale EF, Rodwell AW (1949) The assimilation of amino-acids by bacteria; the nature of resistance to penicillin in Staphylococcus aureus. J Gen Microbiol 3:127–142

    Article  CAS  PubMed  Google Scholar 

  • García-Aljaro C, Muniesa M, Jofre J, Blanch AR (2006) Newly identified bacteriophages carrying the stx2g Shiga toxin gene isolated from Escherichia coli strains in polluted waters. FEMS Microbiol Lett 258:127–135

    Article  PubMed  CAS  Google Scholar 

  • Gasmi L, Boulain H, Gauthier J, Hua-Van A, Musset K, Jakubowska AK, Aury JM, Volkoff AN, Huguet E (2015) Recurrent domestication by lepidoptera of genes from their parasites mediated by bracoviruses. PLoS Genet 11:e1005470

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Geer LY, Domrachev M, Lipman DJ, Bryant SH (2002) CDART: protein homology by domain architecture. Genome Res 12:1619–1623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • George M, Pandalai KM (1949) Sensitization of penicillin-resistant pathogens. Lancet 1:955–957

    Article  CAS  PubMed  Google Scholar 

  • Gerdes JC, Romig WR (1975) Genetic basis of toxin production and pathogenesis in Vibrio cholerae: evidence against phage conversion. Infect Immun 11:445–452

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giakkoupi P, Tzelepi E, Legakis NJ, Tzouvelekis LS (1999) Aspartic acid for asparagine substitution at position 276 reduces susceptibility to mechanism-based inhibitors in SHV-1 and SHV-5 beta-lactamases. J Antimicrob Chemother 43:23–29

    Article  CAS  PubMed  Google Scholar 

  • Goldstein BP (2014) Resistance to rifampicin: a review. J Antibiot (Tokyo) 67:625–630

    Article  CAS  Google Scholar 

  • Gorini L, Kataja E (1964) Phenotypic repair by streptomycin of defective genotypes in E. coli. Proc Natl Acad Sci USA 51:487–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goshorn SC, Schlievert PM (1989) Bacteriophage association of streptococcal pyrogenic exotoxin type C. J Bacteriol 171:3068–3073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gratia JP (2007) Spontaneous zygogenesis (Z-mating) in mecillinam-rounded bacteria. Arch Microbiol 188:565–574

    Article  CAS  PubMed  Google Scholar 

  • Gratia JP (2017) Analysis of evolving lysogenized products of spontaneous zygogenesis in Escherichia coli. FEMS Microbiol Lett 364. https://doi.org/10.1093/femsle/fnw290

  • Gray GS, Fitch WM (1983) Evolution of antibiotic resistance genes: the DNA sequence of a kanamycin resistance gene from Staphylococcus aureus. Mol Biol Evol 1:57–66

    CAS  PubMed  Google Scholar 

  • Gray MD, Lampel KA, Strockbine NA, Fernandez RE, Melton-Celsa AR, Maurelli AT (2014) Clinical isolates of Shiga toxin 1a-producing Shigella flexneri with an epidemiological link to recent travel to Hispañiola. Emerg Infect Dis 20:1669–1677. https://doi.org/10.3201/eid2010.140292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffith F (1928) The significance of pneumococcal types. J Hyg (Lond) 27:113–159

    Article  CAS  Google Scholar 

  • Griffith LJ, Ostrander WE, Smith ZF, Beswick DE (1961) Appearance of kanamycin resistance in a single phage type of Staphylococcus. J Bacteriol 81:157–159

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grimley PM, Rosenblum EN, Mims SJ, Moss B (1970) Interruption by Rifampin of an early stage in vaccinia virus morphogenesis: accumulation of membranes which are precursors of virus envelopes. J Virol 6:519–533

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guinane CM, Penadés JR, Fitzgerald JR (2011) The role of horizontal gene transfer in Staphylococcus aureus host adaptation. Virulence 2:241–243

    Article  PubMed  Google Scholar 

  • Gyles C, Boerlin P (2014) Horizontally transferred genetic elements and their role in pathogenesis of bacterial disease. Vet Pathol 51:328–340

    Article  CAS  PubMed  Google Scholar 

  • Hall BG, Barlow M (2003) Structure-based phylogenies of the serine beta-lactamases. J Mol Evol 57:255–260

    Article  CAS  PubMed  Google Scholar 

  • Hall BG, Salipante SJ, Barlow M (2004) Independent origins of subgroup Bl + B2 and subgroup B3 metallo-beta-lactamases. J Mol Evol 59:133–141

    Article  CAS  PubMed  Google Scholar 

  • Hammerling MJ, Gollihar J, Mortensen C, Alnahhas RN, Ellington AD, Barrick JE (2016) Expanded genetic codes create new mutational routes to rifampicin resistance in Escherichia coli. Mol Biol Evol 33:2054–2063

    Article  CAS  PubMed  Google Scholar 

  • Harada K, Kameda M, Suzuki M, Mitsuhashi S (1963) Drug resistance of enteric bacteria. II. Transduction of transmissible drug-resistance (r) factors with phage epsilon. J Bacteriol 86:1332–1338

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hariharan H, Mitchell WR (1976) Observations on bacteriophages of Clostridium botulinum type C isolates from different sources and the role of certain phages in toxigenicity. Appl Environ Microbiol 32:145–158

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harvey PJH (1940) Listeria: change of name for a genus of bacteria. Nature 145:264

    Google Scholar 

  • Hasanoor Reja AH, Biswas N, Biswas S, Lavania M, Chaitanya VS, Banerjee S, Maha Patra PS, Gupta UD, Patra PK, Sengupta U, Bhattacharya B (2015) Report of rpoB mutation in clinically suspected cases of drug resistant leprosy: a study from Eastern India. Indian J Dermatol Venereol Leprol 81:155–161

    Article  PubMed  Google Scholar 

  • Hayashi T, Matsumoto H, Ohnishi M, Yokota S, Shinomiya T, Kageyama M, Terawaki Y (1994) Cytotoxin-converting phages, φCTX and PS21, are R pyocin-related phages. FEMS Microbiol Lett 122:239–244

    CAS  PubMed  Google Scholar 

  • Hedges RW, Jacob A (1974) Transposition of ampicillin resistance from RP4 to other replicons. Mol Gen Genet 132:31–40

    Article  CAS  PubMed  Google Scholar 

  • Heffron F, Sublett R, Hedges RW, Jacob A, Falkow S (1975) Origin of the TEM-beta-lactamase gene found on plasmids. J Bacteriol 122:250–256

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hendrix RW, Smith MC, Burns RN, Ford ME, Hatfull GF (1999) Evolutionary relationships among diverse bacteriophages and prophages: all the world’s a phage. Proc Natl Acad Sci USA 96:2192–2197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hennekinne JA, De Buyser ML, Dragacci S (2012) Staphylococcus aureus and its food poisoning toxins: characterization and outbreak investigation. FEMS Microbiol Rev 36:815–886

    Article  CAS  PubMed  Google Scholar 

  • Herold S, Karch H, Schmidt H (2004) Shiga toxin-encoding bacteriophages-genomes in motion. Int J Med Microbiol 294:115–121

    Article  CAS  PubMed  Google Scholar 

  • Herrell WE, Nichols DR (1945) The clinical use of streptomycin: a study of 45 cases. Proc Staff Meet Mayo Clin 20:449–462

    CAS  PubMed  Google Scholar 

  • Hodgson DA (2000) Generalized transduction of serotype 1/2 and serotype 4b strains of Listeria monocytogenes. Mol Microbiol 35:312–323

    Article  CAS  PubMed  Google Scholar 

  • Holloway BW (1960) Grouping Pseudomonas aeruginosa by lysogenicity and pyocinogenicity. J Pathol Bacteriol 80:448–450

    Article  CAS  PubMed  Google Scholar 

  • Holloway BW (1969) Genetics of Pseudomonas. Bacteriol Rev 33:419–443

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holloway BW, Monk M (1959) Transduction in Pseudomonas aeruginosa. Nature 184:1426–1427

    Article  PubMed  Google Scholar 

  • Holzmayer TA, Karataev GI, Rozinov MN, Moskvina IL, Shumakov YL, Motin VL, Mebel SM, Gershanovich VN, Lapaeva IA (1988) Bacteriophages of Bordetella sp.: features of lysogeny and conversion. Zentralbl Bakteriol Mikrobiol Hyg A 269:147–155

    CAS  PubMed  Google Scholar 

  • Horng YT, Jeng WY, Chen YY, Liu CH, Dou HY, Lee JJ, Chang KC, Chien CC, Soo PC (2015) Molecular analysis of codon 548 in the rpoB gene involved in Mycobacterium tuberculosis resistance to rifampin. Antimicrob Agents Chemother 59:1542–1548

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hotchkiss RD (1951) Transfer of penicillin resistance in pneumococci by the desoxyribonucleate derived from resistant cultures. Cold Spring Harb Symp Quant Biol 16:457–461

    Article  CAS  PubMed  Google Scholar 

  • Hotchkiss RD (1952) Induction of penicillin resistance by transformation. Bull NY Acad Med 28:346–348

    CAS  Google Scholar 

  • Houston CW, Davis CP, Peterson JW (1982) Salmonella toxin synthesis is unrelated to the presence of temperate bacteriophages. Infect Immun 35:749–751

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang A, Friesen J, Brunton JL (1987) Characterization of a bacteriophage that carries the genes for production of Shiga-like toxin 1 in Escherichia coli. J Bacteriol 169:4308–4312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue K, Lida H (1970) Conversion of toxigenicity in Clostridium botulinum type C. Jpn J Microbiol 14:87–89

    Article  CAS  PubMed  Google Scholar 

  • Inoue K, Lida H (1971) Phage-conversion of toxigenicity in Clostridium botulinum types C and D. Jpn J Med Sci Biol 24:53–56

    CAS  PubMed  Google Scholar 

  • Ismail NA, Ismail MF, Noor SS, Camalxaman SN (2016) Genotypic detection of rpoB and katG gene mutations associated with rifampicin and isoniazid resistance in Mycobacterium tuberculosis isolates. Malays J Med Sci 23:22–26

    PubMed  PubMed Central  Google Scholar 

  • Jiang SC, Paul JH (1998) Gene transfer by transduction in the marine environment. Appl Environ Microbiol 64:2780–2787

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johannessen GS, James CE, Allison HE, Smith DL, Saunders JR, McCarthy AJ (2005) Survival of a Shiga toxin-encoding bacteriophage in a compost model. FEMS Microbiol Lett 245:369–375

    Article  CAS  PubMed  Google Scholar 

  • Johnson LP, Schlievert PM (1984) Group A streptococcal phage T12 carries the structural gene for pyrogenic exotoxin type A. Mol Gen Genet 194:52–56

    Article  CAS  PubMed  Google Scholar 

  • Johnson LP, Schlievert PM, Watson DW (1980) Transfer of group A streptococcal pyrogenic exotoxin production to nontoxigenic strains of lysogenic conversion. Infect Immun 28:254–257

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones WD Jr, David HL (1971) Inhibition by rifampin of mycobacteriophage D29 replication in its drug-resistant host, Mycobacterium smergmatis ATCC 607. Am Rev Respir Dis 103:618–624

    CAS  PubMed  Google Scholar 

  • Jones WD Jr, Beam RE, David HL (1974) Transduction of a streptomycin R-factor from Mycobacterium smegmatis to Mycobacterium tuberculosis H37Rv. Tubercle 55:73–80

    Article  PubMed  Google Scholar 

  • Jones D, Metzger HJ, Schatz A, Waksman SA (1944) Control of Gram-negative bacteria in experimental animals by streptomycin. Science 100:103–105

    Article  CAS  PubMed  Google Scholar 

  • Jouravleva EA, McDonald GA, Garon CF, Boesman-Finkelstein M, Finkelstein RA (1998) Characterization and possible functions of a new filamentous bacteriophage from Vibrio cholerae O139. Microbiology 144:315–324

    Article  CAS  PubMed  Google Scholar 

  • Kaneko J, Kimura T, Narita S, Tomita T, Kamio Y (1998) Complete nucleotide sequence and molecular characterization of the temperate staphylococcal bacteriophage φPVL carrying Panton-Valentine leukocidin genes. Gene 215:57–67

    Article  CAS  PubMed  Google Scholar 

  • Kapur V, Kanjilal S, Hamrick MR, Li LL, Whittam TS, Sawyer SA, Musser JM (1995) Molecular population genetic analysis of the streptokinase gene of Streptococcus pyogenes: mosaic alleles generated by recombination. Mol Microbiol 16:509–519

    Article  CAS  PubMed  Google Scholar 

  • Kasuya M (1964) Transfer of drug resistance between enteric bacteria induced in the mouse intestine. J Bacteriol 88:322–328

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kawamura Y, Hou XG, Sultana F, Miura H, Ezaki T (1995) Determination of 16S rRNA sequences of Streptococcus mitis and Streptococcus gordonii and phylogenetic relationships among members of the genus Streptococcus. Int J Syst Bacteriol 45:406–408

    Article  CAS  PubMed  Google Scholar 

  • Kay E, Vogel TM, Bertolla F, Nalin R, Simonet P (2002) In situ transfer of antibiotic resistance genes from transgenic (transplastomic) tobacco plants to bacteria. Appl Environ Microbiol 68:3345–3351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keen EC (2012) Paradigms of pathogenesis: targeting the mobile genetic elements of disease. Front Cell Infect Microbiol 2:161

    Article  PubMed  PubMed Central  Google Scholar 

  • Keen EC, Bliskovsky VV, Malagon F, Baker JD, Prince JS, Klaus JS, Adhya SL (2017) Novel “superspreader” bacteriophages promote horizontal gene transfer by transformation. MBio 8:e02115–e02216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kendall AI, Walker AW (1910) The isolation of Bacillus dysenteriae from stools. J Med Res 23:481–485

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khalil RK, Skinner C, Patfield S, He X (2016) Phage-mediated Shiga toxin (Stx) horizontal gene transfer and expression in non-Shiga toxigenic Enterobacter and Escherichia coli strains. Pathog Dis 74:ftw037

    Article  PubMed  CAS  Google Scholar 

  • Kimsey HH, Waldor MK (1998a) CTXφ immunity: application in the development of cholera vaccines. Proc Natl Acad Sci USA 95:7035–7039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimsey HH, Waldor MK (1998b) Vibrio cholerae hemagglutinin/protease inactivates CTXφ. Infect Immun 66:4025–4029

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kingston W (2004) Streptomycin, Schatz v. Waksman, and the balance of credit for discovery. J Hist Med Allied Sci 59:441–462

    Article  PubMed  Google Scholar 

  • Kinouchi T, Takumi K, Kawata T (1981) Characterization of two inducible bacteriophages, α1 and α2, isolated from Clostridium botulinum type A 190L and their deoxyribonucleic acids. Microbiol Immunol 25:915–927

    Article  CAS  PubMed  Google Scholar 

  • Kirschbaum JB, Konrad EB (1973) Isolation of a specialized lambda transducing bacteriophage carrying the beta subunit gene for Escherichia coli ribonucleic acid polymerase. J Bacteriol 116:517–526

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klein M, Kimmelman LJ (1946) Development of streptomycin resistance of the Shigellae. J Bacteriol 51:581

    CAS  PubMed  Google Scholar 

  • Knight V, Holzer AR (1954) Studies on staphylococci from hospital patients. I. Predominance of strains of group III phage patterns which are resistant to multiple antibiotics. J Clin Invest 33:1190–1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knothe H, Lebek G, Krcméry V, Seginková Z, Cervenka J, Antal M, Mitsuhashi S (1981) Transduction of amikacin, gentamicin and tobramycin resistance in Pseudomonas aeruginosa with phage F 116 and AP 19, a new wildtype phage. Zentralbl Bakteriol Mikrobiol Hyg A 250:506–510

    CAS  PubMed  Google Scholar 

  • Kollenda MC, Kamp D, Hartmann GR (1986) Mu-induced rifamycin-resistant mutations not located in the rpoB gene of Escherichia coli. Mol Gen Genet 204:192–194

    Article  CAS  PubMed  Google Scholar 

  • Kondo N, Nikoh N, Ijichi N, Shimada M, Fukatsu T (2002) Genome fragment of Wolbachia endosymbiont transferred to X chromosome of host insect. Proc Natl Acad Sci USA 99:14280–14285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konrad B, Kirschbaum J, Austin S (1973) Isolation and characterization of φ80 transducing bacteriophage for a ribonucleic acid polymerase gene. J Bacteriol 116:511–516

    CAS  PubMed  PubMed Central  Google Scholar 

  • Korczynska JE, Turkenburg JP, Taylor EJ (2012) The structural characterization of a prophage-encoded extracellular DNase from Streptococcus pyogenes. Nucleic Acids Res 40:928–938

    Article  CAS  PubMed  Google Scholar 

  • Krcmery V, Výmola F, Mitsuhashi S (1977) Transduction, by phages F116 and G101, of gentamicin-tobramycin resistance, and of “autoplaque formation” property in Pseudomonas aeruginosa. Zentralbl Bakteriol Orig A 239:361–364

    CAS  PubMed  Google Scholar 

  • Kropinski AM, Sulakvelidze A, Konczy P, Poppe C (2007) Salmonella phages and prophages—genomics and practical aspects. Methods Mol Biol 394:133–175

    Article  CAS  PubMed  Google Scholar 

  • Krylov V, Shaburova O, Pleteneva E, Bourkaltseva M, Krylov S, Kaplan A, Chesnokova E, Kulakov L, Magill D, Polygach O (2016) Modular approach to select bacteriophages targeting Pseudomonas aeruginosa for their application to children suffering with cystic fibrosis. Front Microbiol 7:1631

    Article  PubMed  PubMed Central  Google Scholar 

  • Kusters JG, van Vliet AH, Kuipers EJ (2006) Pathogenesis of Helicobacter pylori infection. Clin Microbiol Rev 19:449–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kyrillos A, Arora G, Murray B, Rosenwald AG (2016) The presence of phage orthologous genes in Helicobacter pylori correlates with the presence of the virulence factors CagA and VacA. Helicobacter 21:226–233

    Article  CAS  PubMed  Google Scholar 

  • Lal S, Cheema S, Kalia VC (2008) Phylogeny vs genome reshuffling: horizontal gene transfer. Indian J Microbiol 48:228–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamanna C, McElroy OE, Eklund HW (1946) The purification and crystallization of Clostridium botulinum type A toxin. Science 103:613–614

    Article  CAS  PubMed  Google Scholar 

  • Lang LH (2006) FDA approves use of bacteriophages to be added to meat and poultry products. Gastroenterology 131:1370

    PubMed  Google Scholar 

  • Lányi B, Lantos J (1976) Antigenic changes in Pseudomonas aeruginosa in vivo and after lysogenization in vitro. Acta Microbiol Acad Sci Hung 23:337–351

    PubMed  Google Scholar 

  • Lapaeva IA, Mebel SM, Pereverzev NA, Siniashina LN (1980) Bordetella pertussis bacteriophage. Zh Mikrobiol Epidemiol Immunobiol 5:85–90

    Google Scholar 

  • Lapaeva IA, Mebel SM, Siniashina LN, Shakhvatova OI (1982) Toxigenicity conversion by pertussis phages in Bordetella parapertussis. Zh Mikrobiol Epidemiol Immunobiol 9:60–64

    Google Scholar 

  • Lathe R, Lecocq JP (1977) The firA gene, a locus involved in the expression of rifampicin resistance in Escherichia coli. I. Characterisation of lambdafirA transducing phages constructed in vitro. Mol Gen Genet 154:43–51

    Article  CAS  PubMed  Google Scholar 

  • Laurell G, Wallmark G (1953) Studies on Staphylococcus aureus pyogenes in a children’s hospital. III. Results of phage-typing and tests for penicillin resistance of 2474 strains isolated from patients and staff. Acta Pathol Microbiol Scand 32:438–447

    Article  CAS  PubMed  Google Scholar 

  • Lawson PA, Citron DM, Tyrrell KL, Finegold SM (2016) Reclassification of Clostridium difficile as Clostridioides difficile (Hall and O’Toole 1935) Prévot 1938. Anaerobe 40:95–99

    Article  PubMed  Google Scholar 

  • Lederberg J (1951) Streptomycin resistance; a genetically recessive mutation. J Bacteriol 61:549–550

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lekunberri I, Subirats J, Borrego CM, Balcázar JL (2017) Exploring the contribution of bacteriophages to antibiotic resistance. Environ Pollut 220:981–984

    Article  CAS  PubMed  Google Scholar 

  • Licciardello JJ, Nickerson JT, Ribich CA, Goldblith SA (1967) Thermal inactivation of type E botulinum toxin. Appl Microbiol 15:249–256

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lindsay JA, Holden MT (2006) Understanding the rise of the superbug: investigation of the evolution and genomic variation of Staphylococcus aureus. Funct Integr Genomics 6:186–201

    Article  CAS  PubMed  Google Scholar 

  • Lippi D, Gotuzzo E (2014) The greatest steps towards the discovery of Vibrio cholerae. Clin Microbiol Infect 20:191–195. https://doi.org/10.1111/1469-0691.12390

    Article  CAS  PubMed  Google Scholar 

  • Liu PV (1964) Factors that influence toxigenicity of Pseudomonas aeruginosa. J Bacteriol 88:1421–1427

    CAS  PubMed  PubMed Central  Google Scholar 

  • Livermore DM (1996) Are all beta-lactams created equal? Scand J Infect Dis Suppl 101:33–43

    CAS  PubMed  Google Scholar 

  • Loessner MJ, Scherer S (1995) Organization and transcriptional analysis of the Listeria phage A511 late gene region comprising the major capsid and tail sheath protein genes cps and tsh. J Bacteriol 177:6601–6609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loessner MJ, Schneider A, Scherer S (1996) Modified Listeria bacteriophage lysin genes (ply) allow efficient overexpression and one-step purification of biochemically active fusion proteins. Appl Environ Microbiol 62:3057–3060

    CAS  PubMed  PubMed Central  Google Scholar 

  • Loś JM, Loś M, Węgrzyn A, Węgrzyn G (2013) Altruism of Shiga toxin-producing Escherichia coli: recent hypothesis versus experimental results. Front Cell Infect Microbiol 2:166

    Article  PubMed  PubMed Central  Google Scholar 

  • Loutit JS (1958) A transduction-like process within a single strain of Pseudomonas aeruginosa. J Gen Microbiol 18:315–319

    Article  CAS  PubMed  Google Scholar 

  • Luedemann GM, Brodsky BC (1963) Taxonomy of gentamicin-producing Micromonospora. Antimicrob Agents Chemother (Bethesda) 161:116–124

    CAS  Google Scholar 

  • Lukyanenko V, Malyukova I, Hubbard A, Delannoy M, Boedeker E, Zhu C, Cebotaru L, Kovbasnjuk O (2011) Enterohemorrhagic Escherichia coli infection stimulates Shiga toxin 1 macropinocytosis and transcytosis across intestinal epithelial cells. Am J Physiol Cell Physiol 301:C1140–C1149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luria SE (1946) A test for penicillin sensitivity and resistance in Staphylococcus. Proc Soc Exp Biol Med 61:46–51

    Article  CAS  PubMed  Google Scholar 

  • Lutz KA, Corneille S, Azhagiri AK, Svab Z, Maliga P (2004) A novel approach to plastid transformation utilizes the phiC31 phage integrase. Plant J 37:906–913

    Article  CAS  PubMed  Google Scholar 

  • Ma XX, Ito T, Kondo Y, Cho M, Yoshizawa Y, Kaneko J, Katai A, Higashiide M, Li S, Hiramatsu K (2008) Two different Panton-Valentine leukocidin phage lineages predominate in Japan. J Clin Microbiol 46:3246–3258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacLeod CM, Hodges RG (1945) Prevention of pneumococcal pneumonia by immunization with specific capsular polysaccharides. J Exp Med 82:445–465

    Article  PubMed  PubMed Central  Google Scholar 

  • Magid M, Keeling BH, Reichenberg JS (2015) Neurotoxins: expanding uses of neuromodulators in medicine-major depressive disorder. Plast Reconstr Surg 136:111S–119S. https://doi.org/10.1097/PRS.0000000000001733

    Article  CAS  PubMed  Google Scholar 

  • Mankiewicz E, Liivak M, Dernuet S (1969) Lysogenic mycobacteria: phage variations and changes in host cells. J Gen Microbiol 55:409–416

    Article  CAS  PubMed  Google Scholar 

  • Marshall BJ, Warren JR (1983) Unidentified curved bacilli on gastric epithelium in active chronic gastritis. Lancet 321:1273–1275

    Article  Google Scholar 

  • Matsiota-Bernard P, Vrioni G, Marinis E (1998) Characterization of rpoB mutations in rifampin-resistant clinical Mycobacterium tuberculosis isolates from Greece. J Clin Microbiol 36:20–23

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maumus F, Epert A, Nogué F, Blanc G (2014) Plant genomes enclose footprints of past infections by giant virus relatives. Nat Commun 5:4268

    Article  CAS  PubMed  Google Scholar 

  • Maximescu P (1968) New host-strains for the lysogenic Corynebacterium diphtheriae Park Williams No. 8 strain. J Gen Microbiol 53:125–133

    Article  CAS  PubMed  Google Scholar 

  • Mazaheri Nezhad Fard R, Barton MD, Heuzenroeder MW (2011) Bacteriophage-mediated transduction of antibiotic resistance in enterococci. Lett Appl Microbiol 52:559–564. https://doi.org/10.1111/j.1472-765X.2011.03043.x

    Article  CAS  PubMed  Google Scholar 

  • McDaniel LD, Young E, Delaney J, Ruhnau F, Ritchie KB, Paul JH (2010) High frequency of horizontal gene transfer in the oceans. Science 330:50

    Article  CAS  PubMed  Google Scholar 

  • McDonnell M, Ronda C, Tomasz A (1975) “Diplophage”: a bacteriophage of Diplococcus pneumoniae. Virology 63:577–582

    Article  CAS  PubMed  Google Scholar 

  • McKane L, Ferretti JJ (1981) Phage-host interactions and the production of type A streptococcal exotoxin in group A streptococci. Infect Immun 34:915–919. https://doi.org/10.1126/science.1192243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mechold U, Steiner K, Vettermann S, Malke H (1993) Genetic organization of the streptokinase region of the Streptococcus equisimilis H46A chromosome. Mol Gen Genet 241:129–140

    Article  CAS  PubMed  Google Scholar 

  • Merrick M, Filser M, Kennedy C, Dixon R (1978) Polarity of mutations induced by insertion of transposons Tn5, Tn7 and Tn10 into the nif gene cluster of Klebsiella pneumoniae. Mol Gen Genet 165:103–111

    Article  CAS  PubMed  Google Scholar 

  • Metcalf BJ, Chochua S, Gertz RE Jr, Li Z, Walker H, Tran T, Hawkins PA, Glennen A, Lynfield R, Li Y, McGee L, Beall B (2016) Using whole genome sequencing to identify resistance determinants and predict antimicrobial resistance phenotypes for year 2015 invasive pneumococcal disease isolates recovered in the United States. Clin Microbiol Infect 22:1002.e11002.e8

    Google Scholar 

  • Metcalfe NH (2011) Sir Geoffrey Marshall (1887-1982): respiratory physician, catalyst for anaesthesia development, doctor to both Prime Minister and King, and World War I Barge Commander. J Med Biogr 19:10–14

    Article  PubMed  Google Scholar 

  • Miller CP, Bohnhoff M (1946) The development of penicillin resistance by meningococcus in vivo. J Bacteriol 51:580

    CAS  PubMed  Google Scholar 

  • Moncalvo F, Moreo G (1966) Ricerche cliniche preliminari sull’impiego di una nuova rifamicina orale (rifaldazina) nella terapia della tubercolosi polmonare (nota preventiva). G Ital Tuberc Mal Torace 20:120–131

    CAS  Google Scholar 

  • Monier JM, Demanèche S, Delmont TO, Mathieu A, Vogel TM, Simonet P (2011) Metagenomic exploration of antibiotic resistance in soil. Curr Opin Microbiol 14:229–235

    Article  CAS  PubMed  Google Scholar 

  • Moon BY, Park JY, Hwang SY, Robinson DA, Thomas JC, Fitzgerald JR, Park YH, Seo KS (2015) Phage-mediated horizontal transfer of a Staphylococcus aureus virulence-associated genomic island. Sci Rep 5:9784

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morales M, García P, de la Campa AG, Liñares J, Ardanuy C, García E (2010) Evidence of localized prophage-host recombination in the lytA gene, encoding the major pneumococcal autolysin. J Bacteriol 192:2624–2632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller J, Reinert H, Malke H (1989) Streptokinase mutations relieving Escherichia coli K-12 (prlA4) of detriments caused by the wild-type skc gene. J Bacteriol 171:2202–2208

    Article  PubMed  PubMed Central  Google Scholar 

  • Muniesa M, García A, Miró E, Mirelis B, Prats G, Jofre J, Navarro F (2004) Bacteriophages and diffusion of β-lactamase genes. Emerg Infect Dis 10:1134–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muniesa M, Hammerl JA, Hertwig S, Appel B, Brüssow H (2012) Shiga toxin-producing Escherichia coli O104:H4: a new challenge for microbiology. Appl Environ Microbiol 78:4065–4073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray EGD, Webb RE, Swann MBR (1926) A disease of rabbits characterized by a large mononuclear leucocytosis, caused by a hitherto undescribed bacillus Bacterium monocytogenes. J Pathol Bacteriol 29:407–439

    Article  Google Scholar 

  • Newcombe HB, Hawirko R (1949) Spontaneous mutation to streptomycin resistance and dependence in Escherichia coli. J Bacteriol 57:565–572

    CAS  PubMed  PubMed Central  Google Scholar 

  • Niu YD, Stanford K, Ackermann HW, McAllister TA (2012) Characterization of 4 T1-like lytic bacteriophages that lyse Shiga-toxin Escherichia coli O157:H7. Can J Microbiol 58:923–927

    Article  CAS  PubMed  Google Scholar 

  • Niu YD, McAllister TA, Nash JH, Kropinski AM, Stanford K (2014) Four Escherichia coli O157:H7 phages: a new bacteriophage genus and taxonomic classification of T1-like phages. PLoS One 9:e100426

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nnalue NA, Lindberg AA (1990) Salmonella choleraesuis strains deficient in O antigen remain fully virulent for mice by parenteral inoculation but are avirulent by oral administration. Infect Immun 58:2493–2501

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nomura N, Yamagishi H, Oka A (1978) Isolation and characterization of transducing coliphage fd carrying a kanamycin resistance gene. Gene 3:39–51

    Article  CAS  PubMed  Google Scholar 

  • Novick RP, Subedi A (2007) The SaPIs: mobile pathogenicity islands of Staphylococcus. Chem Immunol Allergy 93:42–57

    Article  CAS  PubMed  Google Scholar 

  • Novick RP, Christie GE, Penadés JR (2010) The phage-related chromosomal islands of gram-positive bacteria. Nat Rev Microbiol 8:541–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ochang EA, Udoh UA, Emanghe UE, Tiku GO, Offor JB, Odo M, Nkombe E, Owuna OE, Obeten SM, Meremikwu MM (2016) Evaluation of rifampicin resistance and 81-bp rifampicin resistant determinant region of rpoB gene mutations of Mycobacterium tuberculosis detected with XpertMTB/Rif in Cross River State, Nigeria. Int J Mycobacteriol 5:S145–S146

    Article  PubMed  Google Scholar 

  • Ochiai KT, Yamanaka T, Kimura K, Sawada O (1959) Studies on inheritance of drug resistance between Shigella strains and Escherichia coli strains. Nihon Iji Shimpo 1861:34–46

    Google Scholar 

  • Ogston A (1984) On Abscesses. Classics in infectious diseases. Rev Infect Dis 6:122–128

    Article  Google Scholar 

  • Oguma K, Iida H, Inoue K (1973) Bacteriophage and toxigenicity in Clostridium botulinum: an additional evidence for phage conversion. Jpn J Microbiol 17:425–426

    Article  CAS  PubMed  Google Scholar 

  • Oka A, Sugisaki H, Takanami M (1981) Nucleotide sequence of the kanamycin resistance transposon Tn903. J Mol Biol 147:217–226

    Article  CAS  PubMed  Google Scholar 

  • Okami Y, Tazaki T, Katumatas HK, Suzuki M, Umezawa H (1959) Studies on Streptomyces kanamyceticus, producer of kanamycin. J Antibiot (Tokyo) 12:252–256

    CAS  Google Scholar 

  • Okanishi M, Utahara R, Okami Y (1966) Infection of the protoplasts of Streptomyces kanamyceticus with deoxyribonucleic acid preparation from actinophage PK-66. J Bacteriol 92:1850–1852

    CAS  PubMed  PubMed Central  Google Scholar 

  • Orias E, Gartner TK (1966) Suppression of amber and ochre rII mutants of bacteriophage T4 by streptomycin. J Bacteriol 91:2210–2215

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pacini F (1854) Osservazioni microscopiche e deduzioni patologiche sul cholera asiatico. Gazzetta Medica Italiana: Toscana 4:397–401

    Google Scholar 

  • Pappenheimer A (1977) Diphtheria toxin. Annu Rev Biochem 46:69–94

    Article  CAS  PubMed  Google Scholar 

  • Passent J, Kaesberg P (1971) Effect of rifampin on the development of ribonucleic acid bacteriophage Qβ. J Virol 8:286–292

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patterson AC (1965) Bacteriocinogeny and lysogeny in the genus Pseudomonas. J Gen Microbiol 39:295–303

    Article  Google Scholar 

  • Pavlovskis OR (1972) Pseudomonas aeruginosa exotoxin: effect on cellular and mitochondrial respiration. J Infect Dis 126:48–53

    Article  CAS  PubMed  Google Scholar 

  • Pérez Del Molino ML, Barbeito-Castiñeiras G, Mejuto B, Alonso P, Fernández A, González-Mediero G (2016) The genotypic study of Mycobacterium tuberculosis complex resistant to isoniazid: Galicia, Spain (2008-2013). Eur J Clin Microbiol Infect Dis 35:1795–1801

    Article  PubMed  CAS  Google Scholar 

  • Peterson JW, Houston CW, Koo FC (1981) Influence of cultural conditions on mitomycin C-mediated bacteriophage induction and release of Salmonella toxin. Infect Immun 32:232–242

    CAS  PubMed  PubMed Central  Google Scholar 

  • Petridis M, Bagdasarian M, Waldor MK, Walker E (2006) Horizontal transfer of Shiga toxin and antibiotic resistance genes among Escherichia coli strains in house fly (Diptera: Muscidae) gut. J Med Entomol 43:288–295

    Article  CAS  PubMed  Google Scholar 

  • Pollack M, Taylor NS, Callahan LT (1977) Exotoxin production by clinical isolates of Pseudomonas aeruginosa. Infect Immun 15:776–780

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pontiroli A, Rizzi A, Simonet P, Daffonchio D, Vogel TM, Monier J-M (2009) Visual evidence of horizontal gene transfer between plants and bacteria in the phytosphere of transplastomic Tobacco. Appl Environ Microbiol 75:3314–3322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Price AR, Frabotta M (1972) Resistance of bacteriophage PBS2 infection to rifampicin, an inhibitor of Bacillus subtilis RNA synthesis. Biochem Biophys Res Commun 48:1578–1585

    Article  CAS  PubMed  Google Scholar 

  • Quinn RW, Lowry PN (1974) Streptococcal L forms and phage. A clinical-epidemiologic study. Yale J Biol Med 47:86–92

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rachek LI, Tucker AM, Winkler HH, Wood DO (1998) Transformation of Rickettsia prowazekii to rifampin resistance. J Bacteriol 180:2118–2124

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ram G, Chen J, Kumar K, Ross HF, Ubeda C, Damle PK, Lane KD, Penadés JR, Christie GE, Novick RP (2012) Staphylococcal pathogenicity island interference with helper phage reproduction is a paradigm of molecular parasitism. Proc Natl Acad Sci USA 109:16300–16305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reglinski M, Sriskandan S (2014) The contribution of group A streptococcal virulence determinants to the pathogenesis of sepsis. Virulence 5:127–136

    Article  PubMed  Google Scholar 

  • Reznikoff WS (2003) Tn5 as a model for understanding DNA transposition. Mol Microbiol 47:1199–1206

    Article  CAS  PubMed  Google Scholar 

  • Richards TA, Soanes DM, Foster PG, Leonard G, Thornton CR, Talbot NJ (2009) Phylogenomic analysis demonstrates a pattern of rare and ancient horizontal gene transfer between plants and fungi. Plant Cell 21:1897–1911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riedel T, Wittmann J, Bunk B, Schober I, Spröer C, Gronow S, Overmann J (2017) A Clostridioides difficile bacteriophage genome encodes functional binary toxin-associated genes. J Biotechnol. pii: S0168-1656(17)30080-30089

    Google Scholar 

  • Robbins PW, Keller JM, Wright A, Bernstein RL (1965) Enzymatic and kinetic studies on the mechanism of o-antigen conversion by bacteriophage ε15. J Biol Chem 240:384–390

    CAS  PubMed  Google Scholar 

  • Ronayne EA, Wan YC, Boudreau BA, Landick R, Cox MM (2016) P1 Ref endonuclease: a molecular mechanism for phage-enhanced antibiotic lethality. PLoS Genet 12:e1005797

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ronda C, López R, García E (1981) Isolation and characterization of a new bacteriophage, Cp-1, infecting Streptococcus pneumoniae. J Virol 40:551–559

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rondón L, Piuri M, Jacobs WR Jr, de Waard J, Hatfull GF, Takiff HE (2011) Evaluation of fluoromycobacteriophages for detecting drug resistance in Mycobacterium tuberculosis. J Clin Microbiol 49:1838–1842

    Article  PubMed  PubMed Central  Google Scholar 

  • Sabath LD, Abraham EP (1966) Zinc as a cofactor for cephalosporinase from Bacillus cereus 569. Biochem J 98:11C–13C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saitoh M, Tanaka K, Nishimori K, Makino S, Kanno T, Ishihara R, Hatama S, Kitano R, Kishima M, Sameshima T, Akiba M, Nakazawa M, Yokomizo Y, Uchida I (2005) The artAB genes encode a putative ADP-ribosyltransferase toxin homologue associated with Salmonella enterica serovar Typhimurium DT104. Microbiology 151:3089–3096

    Article  CAS  PubMed  Google Scholar 

  • Salgado-Pabón W, Herrera A, Vu BG, Stach CS, Merriman JA, Spaulding AR, Schlievert PM (2014) Staphylococcus aureus β-toxin production is common in strains with the β-toxin gene inactivated by bacteriophage. J Infect Dis 210:784–792

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sanchini A, Del Grosso M, Villa L, Ammendolia MG, Superti F, Monaco M, Pantosti A (2014) Typing of Panton-Valentine leukocidin-encoding phages carried by methicillin-susceptible and methicillin-resistant Staphylococcus aureus from Italy. Clin Microbiol Infect 20:O840–O846

    Article  CAS  PubMed  Google Scholar 

  • Sanderson KE, Saeed YA (1972) P22-mediated transduction analysis of the rough A (rfa) region of the chromosome of Salmonella typhimurium. J Bacteriol 112:58–63

    CAS  PubMed  PubMed Central  Google Scholar 

  • Săsărman A, Antohi M (1965) Study on the transduction of streptomycin resistance in Salmonella typhimurium. Arch Roum Pathol Exp Microbiol 24:651–656

    PubMed  Google Scholar 

  • Saz AK, Eagle H (1953) The co-killing of penicillin sensitive and penicillin resistant bacteria at low concentrations of the antibiotic. J Bacteriol 66:347–352

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scallan E, Griffin PM, Angulo FJ, Tauxe RV, Hoekstra RM (2011) Foodborne illness acquired in the United States-unspecified agents. Emerg Infect Dis 17:16–22

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmidt B, Lenk V (1958) Observations on the relation between antibiotic resistance and amp; phage type of pathogenic staphylococci. Zentralbl Bakteriol Orig 171:590–600

    CAS  PubMed  Google Scholar 

  • Sensi P (1983) History of the development of rifampin. Rev Infect Dis 3:S402–S406

    Article  Google Scholar 

  • Sensi P, Margalith P, Timbal MT (1959) Rifomycin, a new antibiotic; preliminary report. Farmaco Sci 14:146–147

    CAS  PubMed  Google Scholar 

  • Sheikh HQ, Aqil A, Kirby A, Hossain FS (2015) Panton-Valentine leukocidin osteomyelitis in children: a growing threat. Br J Hosp Med 76:18–24

    Article  Google Scholar 

  • Shousha A, Awaiwanont N, Sofka D, Smulders FJ, Paulsen P, Szostak MP, Humphrey T, Hilbert F (2015) Bacteriophages isolated from chicken meat and the horizontal transfer of antimicrobial resistance genes. Appl Environ Microbiol 81:4600–4606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shwartzman G (1946) Studies on the nature of resistance of gram-negative bacilli to penicillin: antagonistic and enhancing effects of amino acids. J Exp Med 83:65–88

    Article  PubMed  PubMed Central  Google Scholar 

  • Siddiqui KA, Bhattacharyya FK (1987) Phage-induced change of toxigenesis in Vibrio cholerae. J Med Microbiol 23:331–334

    Article  CAS  PubMed  Google Scholar 

  • Silliker JH, Taylor WI (1957) The relationship between bacteriophages of Salmonellae and their O antigens. J Lab Clin Med 49:460–464

    CAS  PubMed  Google Scholar 

  • Simonson AB, Servin JA, Skophammer RG, Herbold CW, Rivera MC, Lake JA (2005) Decoding the genomic tree of life. Proc Natl Acad Sci USA 102(Suppl 1):6608–6613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh S, Bharati AP, Singh N, Pandey P, Joshi P, Singh K, Mitra K, Gayen JR, Sarkar J, Akhtar MS (2014) The prophage-encoded hyaluronate lyase has broad substrate specificity and is regulated by the N-terminal domain. J Biol Chem 289:35225–35236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siniashina LN, Karataev GI (2006) Molecular evidence for the lysogenic state of microorganisms belonging to the genus Bordetella and characterization of Bordetella parapertussis temperate bacteriophage 66(2.2). Genetika 42:339–348

    CAS  PubMed  Google Scholar 

  • Siu LK, Lu PL, Chen JY, Lin FM, Chang SC (2003) High-level expression of ampC beta-lactamase due to insertion of nucleotides between -10 and -35 promoter sequences in Escherichia coli clinical isolates: cases not responsive to extended-spectrum-cephalosporin treatment. Antimicrob Agents Chemother 47:2138–2144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sjöström JE, Löfdahl S, Philipson L (1975) Transformation reveals a chromosomal locus of the gene(s) for methicillin resistance in Staphylococcus aureus. J Bacteriol 123:905–915

    PubMed  PubMed Central  Google Scholar 

  • Skarin H, Segerman B (2014) Plasmidome interchange between Clostridium botulinum, Clostridium novyi and Clostridium haemolyticum converts strains of independent lineages into distinctly different pathogens. PLoS One 9:e107777

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Skarin H, Håfström T, Westerberg J, Segerman B (2011) Clostridium botulinum group III: a group with dual identity shaped by plasmids, phages and mobile elements. BMC Genomics 12:185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skjold SA, Maxted WR, Wannamaker LW (1982) Transduction of the genetic determinant for streptolysin S in group A streptococci. Infect Immun 38:183–188

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smeltzer MS, Hart ME, Iandolo JJ (1994) The effect of lysogeny on the genomic organization of Staphylococcus aureus. Gene 138:51–57

    Article  CAS  PubMed  Google Scholar 

  • Smith DI, Lus RG, Rubio Calvo MC, Datta N, Jacob AE, Hedges RW (1975) Third type of plasmid conferring gentamicin resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 8:227–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soussy CJ, Bouanchaud DH, Fouace J, Dublanchet A, Duval J (1975) A gentamycin resistance plasmid in Staphylococcus aureus. Ann Microbiol (Paris) 126B:91–94

    CAS  Google Scholar 

  • Spears KJ, Roe AJ, Gally DL (2006) A comparison of enteropathogenic and enterohaemorrhagic Escherichia coli pathogenesis. FEMS Microbiol Lett 255:187–202

    Article  CAS  PubMed  Google Scholar 

  • Speyer JF, Lengyel P, Basilio C, Ochoa S (1962) Synthetic polynucleotides and the amino acid code. IV. Proc Natl Acad Sci USA 48:441–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spotts CR, Stanier Y (1961) Mechanism of streptomycin action on bacteria: a unitary hypothesis. Nature 142:633–637

    Article  Google Scholar 

  • Stanczak-Mrozek KI, Laing KG, Lindsay JA (2017) Resistance gene transfer: induction of transducing phage by sub-inhibitory concentrations of antimicrobials is not correlated to induction of lytic phage. J Antimicrob Chemother 72:1624–1631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stark RM, Gerwig GJ, Pitman RS, Potts LF, Williams NA, Greenman J, Weinzweig IP, Hirst TR, Millar MR (1999) Biofilm formation by Helicobacter pylori. Lett Appl Microbiol 28:121–126

    Article  CAS  PubMed  Google Scholar 

  • Strauch E, Lurz R, Beutin L (2001) Characterization of a Shiga toxin-encoding temperate bacteriophage of Shigella sonnei. Infect Immun 69:7588–7595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stuart JG, Ferretti JJ (1973) Transduction of rifampin resistance in group A streptococci. J Bacteriol 115:709–710

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sugiyama H (1980) Clostridium botulinum neurotoxin. Microbiol Rev 44:419–448

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sugiyama H, King GJ (1972) Isolation and taxonomic significance of bacteriophages for non-proteolytic Clostridium botulinum. J Gen Microbiol 70:517–525

    Article  CAS  PubMed  Google Scholar 

  • Sutliff WD, Mason K (1947) Streptomycin resistance of Brucella suis and Eberthella typhosa. Proc Annu Meet Cent Soc Clin Res U S 20:72

    CAS  PubMed  Google Scholar 

  • Sword CP, Pickett MJ (1961) The isolation and characterization of bacteriophages from Listeria monocytogenes. J Gen Microbiol 25:241–248

    Article  CAS  PubMed  Google Scholar 

  • Takano T, Ikeda S (1976) Phage P1 carrying kanamycin resistance gene of R factor. Virology 70:198–200

    Article  CAS  PubMed  Google Scholar 

  • Tham TN, Guesdon JL (1992) Detection of point mutation in blaT genes of Enterobacteriaceae by biotinylated oligonucleotide probes using microwell hybridization and enzymofluorometric method. Mol Cell Probes 6:79–85

    Article  CAS  PubMed  Google Scholar 

  • Tilney LG, Portnoy DA (1989) Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J Cell Biol 109:1597–1608

    Article  CAS  PubMed  Google Scholar 

  • Tokunaga T, Sellers MI (1965) Streptomycin induction of premature lysis of bacteriophage-infected mycobacteria. J Bacteriol 89:537–538

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tomb JF, White O, Kerlavage AR, Clayton RA, Sutton GG, Fleischmann RD, Ketchum KA, Klenk HP, Gill S, Dougherty BA, Nelson K, Quackenbush J, Zhou L, Kirkness EF, Peterson S, Loftus B, Richardson D, Dodson R, Khalak HG, Glodek A, McKenney K, Fitzegerald LM, Lee N, Adams MD, Hickey EK, Berg DE, Gocayne JD, Utterback TR, Peterson JD, Kelley JM, Cotton MD, Weidman JM, Fujii C, Bowman C, Watthey L, Wallin E, Hayes WS, Borodovsky M, Karp PD, Smith HO, Fraser CM, Venter JC (1997) The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388:539–547

    Article  CAS  PubMed  Google Scholar 

  • Tóth I, Sváb D, Bálint B, Brown-Jaque M, Maróti G (2016) Comparative analysis of the Shiga toxin converting bacteriophage first detected in Shigella sonnei. Infect Genet Evol 37:150–157

    Article  PubMed  CAS  Google Scholar 

  • Ullah I, Shah AA, Basit A, Ali M, Khan A, Ullah U, Ihtesham M, Mehreen S, Mughal A, Javaid A (2016) Rifampicin resistance mutations in the 81 bp RRDR of rpoB gene in Mycobacterium tuberculosis clinical isolates using Xpert MTB/RIF in Khyber Pakhtunkhwa, Pakistan: a retrospective study. BMC Infect Dis 16:413

    Article  PubMed  PubMed Central  Google Scholar 

  • Umezawa H, Ueda M, Maeda K, Yagishita K, Kondo S, Okami Y, Utahara R, Osato Y, Nitta K, Takeuchi T (1957) Production and isolation of a new antibiotic kanamycin. J Antibiot (Tokyo) 10:181–188

    CAS  Google Scholar 

  • van Ermengem E (1897) Ueber einen neuen anaëroben Bacillus und seine Beziehungen zum Botulismus. Z Hyg Infektionskr 26:1–56

    Google Scholar 

  • Vanessa MD, King C, Kalan L, Morar M, Sung W, Schwarz C, Froese D, Zazula G, Calmels F, Debruyne R, Golding GB, Poinar HN, Wright GD (2011) Antibiotic resistance is ancient. Nature 477:457–461

    Article  CAS  Google Scholar 

  • Vaughan M, Moss J (1978) Mechanism of action of choleragen. J Supramol Struct 8:473–488

    Article  CAS  PubMed  Google Scholar 

  • Vázquez-Boland JA, Domínguez-Bernal G, González-Zorn B, Kreft J, Goebel W (2001) Pathogenicity islands and virulence evolution in Listeria. Microbes Infect 3:571–584

    Article  PubMed  Google Scholar 

  • Vedithi SC, Lavania M, Kumar M, Kaur P, Turankar RP, Singh I, Nigam A, Sengupta U (2015) A report of rifampin-resistant leprosy from northern and eastern India: identification and in silico analysis of molecular interactions. Med Microbiol Immunol 204:193–203

    Article  CAS  PubMed  Google Scholar 

  • Veses-Garcia M, Liu X, Rigden DJ, Kenny JG, McCarthy AJ, Allison HE (2015) Transcriptomic analysis of Shiga-toxigenic bacteriophage carriage reveals a profound regulatory effect on acid resistance in Escherichia coli. Appl Environ Microbiol 81:8118–8125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villa TG, Feijoo-Siota L, Rama JL, Sánchez-Pérez A, de Miguel T (2016) Human mutations affecting antibiotics. In: Villa, Viñas (eds) New Weapons to control bacterial growth. Springer, Cham, pp 353–393

    Chapter  Google Scholar 

  • Von Graevenitz A (1964) Genetic transfer of streptomycin and aminopropanolstreptomycin resistance. J Bacteriol 88:960–964

    Google Scholar 

  • Voureka A (1948) Sensitisation of penicillin resistant bacteria. Lancet I:62

    Article  Google Scholar 

  • Výmola F, Krcméry V, Mitsuhashi S (1979) Wild – type Pseudomonas aeruginosa phage AP 34 transducing gentamicin-tobramycin resistance and autoplaque formation. J Hyg Epidemiol Microbiol Immunol 23:74–77

    PubMed  Google Scholar 

  • Waksman SA, Reilly HC, Schatz A (1945) Strain specificity and production of antibiotic substances: V. Strain resistance of bacteria to antibiotic substances, especially to streptomycin. Proc Natl Acad Sci USA 31:157–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waldor MK, Mekalanos JJ (1996) Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272:1910–1914

    Article  CAS  PubMed  Google Scholar 

  • Wall JD, Weaver PF, Gest H (1975) Gene transfer agents, bacteriophages, and bacteriocins of Rhodopseudomonas capsulata. Arch Microbiol 105:217–224

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Fukasawa T (1961) Episome-mediated transfer of drug resistance in Enterobacteriaceae. III. Transduction of resistance factors. J Bacteriol 82:202–209

    CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe T, Lyang KW (1962) Episome-mediated transfer of drug resistance in Enterobacteriaceae. V. Spontaneous segregation and recombination of resistance factors in Salmonella typhimurium. J Bacteriol 84:422–430

    CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe T, Watanabe M (1959) Transduction of streptomycin resistance in Salmonella typhimurium. Microbial 21:16–29

    CAS  Google Scholar 

  • Watson JM, Holloway BW (1978) Linkage map of Pseudomonas aeruginosa PAT. J Bacteriol 136:507–521

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weeks CR, Ferretti JJ (1984) The gene for type A streptococcal exotoxin (erythrogenic toxin) is located in bacteriophage T12. Infect Immun 46:531–536

    CAS  PubMed  PubMed Central  Google Scholar 

  • Witte W, Dünnhaupt K (1984) Occurrence of a nonplasmid-located determinant for gentamicin resistance in strains of Staphylococcus aureus. J Hyg (Lond) 93:1–8

    Article  CAS  Google Scholar 

  • Woese CR (2004) A new biology for a new century. Microbiol Mol Biol Rev 68:173–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolinsky E, Steenken W (1946) Streptomycin and penicillin resistant staphylococci; influence of pH, body fluids on streptomycin action. Proc Soc Exp Biol Med 62:162–1651

    Article  CAS  PubMed  Google Scholar 

  • Wright A (1971) Mechanism of conversion of the salmonella O antigen by bacteriophage ε34. J Bacteriol 105:927–936

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wright GD (2007) The antibiotic resistome: the nexus of chemical and genetic diversity. Nat Rev Microbiol 5:175–186

    Article  CAS  PubMed  Google Scholar 

  • Youmans GP, Williston EH, Feldman WH, Hinshaw HC (1946) Increase in resistance of tubercle bacilli to streptomycin: a preliminary report. Proc Staff Meet Mayo Clin 21:126–127

    CAS  PubMed  Google Scholar 

  • Yourassowsky E, Schoutens E, Beumer J (1971) Pseudomonas aeruginosa with exceptionally high resistance to gentamicin in hospital wards. Susceptibility and phage typing. Rev Eur Etud Clin Biol 16:927–929

    CAS  PubMed  Google Scholar 

  • Yue WF, Du M, Zhu MJ (2012) High temperature in combination with UV irradiation enhances horizontal transfer of stx2 gene from E. coli O157:H7 to non-pathogenic E. coli. PLoS One 7:e31308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zabriskie JB (1964) The role of temperate bacteriophage in the production of erythrogenic toxin by group a streptococci. J Exp Med 119:761–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeaki N, Susilo YB, Pregiel A, Rådström P, Schelin J (2015) Prophage-encoded staphylococcal enterotoxin A: regulation of production in Staphylococcus aureus strains representing different sea regions. Toxins (Basel) 7:5359–5376

    Article  CAS  Google Scholar 

  • Zengel JM, Young R, Dennis PP, Nomura M (1977) Role of ribosomal protein S12 in peptide chain elongation: analysis of pleiotropic, streptomycin-resistant mutants of Escherichia coli. J Bacteriol 129:1320–1329

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Fan F, Zhao Y, Sun L, Liu Y, Keegan RM, Isupov MN, Wu Y (2017) Crystal structure of the type IV secretion system component CagX from Helicobacter pylori. Acta Crystallogr F Struct Biol Commun 73:167–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Sugiyama H, Johnson EA (1993) Transfer of neurotoxigenicity from Clostridium butyricum to a nontoxigenic Clostridium botulinum type E-like strain. Appl Environ Microbiol 59:3825–3831

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zierdt CH, Schmidt PJ (1964) Dissociation in Pseudomonas aeruginosa. J Bacteriol 87:1003–1010

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zinder N, Lederberg J (1952) Genetic exchange in Salmonella. J Bacteriol 64:679–699

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. G. Villa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Villa, T.G., Feijoo-Siota, L., Rama, J.R., Sánchez-Pérez, A., Viñas, M. (2019). Horizontal Gene Transfer Between Bacteriophages and Bacteria: Antibiotic Resistances and Toxin Production. In: Villa, T., Viñas, M. (eds) Horizontal Gene Transfer. Springer, Cham. https://doi.org/10.1007/978-3-030-21862-1_3

Download citation

Publish with us

Policies and ethics