Skip to main content

Transfer of Secondary Metabolite Gene Clusters: Assembly and Reorganization of the β-Lactam Gene Cluster from Bacteria to Fungi and Arthropods

  • Chapter
  • First Online:
Book cover Horizontal Gene Transfer
  • 1192 Accesses

Abstract

Filamentous fungi are able to produce a wide array of secondary metabolites with important biological and medical activities. The biosynthesis of secondary metabolites is encoded by gene clusters that include structural, regulatory and transport genes. Complete sets of genes are transferred by HGT from bacteria to fungi and to higher eukaryotes. In addition, genes have been laterally transferred by LGT between phylogenetically distant fungi.

Many of these HGTs involve genes derived from bacteria that have been modified in fungi by incorporating new genes of eukaryote origin. Important examples of HGT from bacteria to fungi include the transfer of the 6-methylsalicylic acid gene cluster and the three-gene cluster for the reduction of nitrate to ammonia. Examples of lateral transfer of NRPS and PKS gene clusters are discussed. The evolution of β-lactam gene clusters constitutes a paradigmatic example of the assembly, transfer, modification and conservation of gene clusters. In the Eurotiales (Penicillium/Aspergillus), the pcbAB and pcbC genes were integrated next to a three intron-containing gene, penDE, encoding an acyltransferase. In the Hypocreales (Acremonium/Kallichroma/Pochonia), a larger gene cluster was assembled that contains also the bifunctional isopenicillin N expandase-hydroxylase gene, which derives from homologous genes in bacteria. Since the bidirectional divergent arrangement of pcbAB-pcbC genes is common to all fungi, in contrast to the head to tail organization of these genes in all bacteria, we conclude that a major reorganization of these two genes took place during the initial transfer from bacteria to a β-lactam ancestor in fungi. The phylogenetic studies indicate that a single ancient HGT event took place from Gram-negative bacteria followed by a lateral transfer from a receptor fungus from the Hypocreales order to other fungi. Interestingly, the first two genes of the penicillin-cephalosporin gene cluster have been found in the arthropod Folsomia candida. The phylogenetic tree supports the conclusion that these β-lactam genes were transferred to F. candida in an early separated event.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aharonowitz Y, Cohen G, Martín JF (1992) Penicillin and cephalosporin biosynthetic genes: structure, organization, regulation, and evolution. Annu Rev Microbiol 46:461–495

    Article  CAS  PubMed  Google Scholar 

  • Andersson JO (2005) Lateral gene transfer in eukaryotes. Cell Mol Life Sci 62(11):1182–1197

    Article  CAS  PubMed  Google Scholar 

  • Andersen B, Smedsgaard J, Frisvad JC (2004) Penicillium expansum: consistent production of patulin, chaetoglobosins, and other secondary metabolites in culture and their natural occurrence in fruit products. J Agric Food Chem 52:2421–2428

    Article  CAS  PubMed  Google Scholar 

  • Baker BJ, Dotzlaf JE, Yeh WK (1991) Deacetoxycephalosporin C hydroxylase of Streptomyces clavuligerus. Purification, characterization, bifunctionality, and evolutionary implication. J Biol Chem 266:5087–5093

    CAS  PubMed  Google Scholar 

  • Binder U, Chu M, Read ND, Marx F (2010) The antifungal activity of the Penicillium chrysogenum protein PAF disrupts calcium homeostasis in Neurospora crassa. Eukaryot Cell 9:1374–1382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brakhage AA, Thön M, Spröte P et al (2009) Aspects on evolution of fungal beta-lactam biosynthesis gene clusters and recruitment of trans-acting factors. Phytochemistry 70:1801–1811

    Article  CAS  PubMed  Google Scholar 

  • Brown DW, Butchko RA, Busman M, Proctor RH (2007) The Fusarium verticillioides FUM gene cluster encodes a Zn(II)2Cys6 protein that affects FUM gene expression and fumonisin production. Eukaryot Cell 6:1210–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buades C, Moya A (1996) Phylogenetic analysis of the isopenicillin N synthetase horizontal gene transfer. J Mol Evol 42:537–542

    Article  CAS  PubMed  Google Scholar 

  • Cheeseman K, Ropars J, Renault P et al (2014) Multiple recent horizontal transfers of a large genomic region in cheese making fungi. Nat Commun 5:2876

    Article  PubMed  CAS  Google Scholar 

  • Coelho MA, Gonçalves C, Sampaio JP, Gonçalves P (2013) Extensive intra-kingdom horizontal gene transfer converging on a fungal fructose transporter gene. PLoS Genet 9(6):e1003587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen G, Shiffman D, Mevarech M, Aharonowitz Y (1990) Microbial isopenicillin N synthase genes: structure, function, diversity and evolution. Trends Biotechnol 8:105–111

    Article  CAS  PubMed  Google Scholar 

  • Cubero B, Gómez D, Scazzocchio C (2000) Metabolite repression and inducer exclusion in the proline utilization gene cluster of Aspergillus nidulans. J Bacteriol 182:233–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Díez B, Gutiérrez S, Barredo JL et al (1990) The cluster of penicillin biosynthetic genes. Identification and characterization of the pcbAB gene encoding the alpha-aminoadipyl-cysteinyl-valine synthetase and linkage to the pcbC and penDE genes. J Biol Chem 265:16358–16365

    PubMed  Google Scholar 

  • Dotzlaf JE, Yeh WK (1989) Purification and properties of deacetoxycephalosporin C synthase from recombinant Escherichia coli and its comparison with the native enzyme purified from Streptomyces clavuligerus. J Biol Chem 264:10219–10227

    CAS  PubMed  Google Scholar 

  • Druzhinina IS, Kubicek EM, Kubicek CP (2016) Several steps of lateral gene transfer followed by events of ‘birth-and-death’ evolution shaped a fungal sorbicillinoid biosynthetic gene cluster. BMC Evol Biol 16(1):269

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dunning Hotopp JC (2011) Horizontal gene transfer between bacteria and animals. Trends Genet 27:157–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunning Hotopp JC, Clark ME et al (2007) Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes. Science 317:1753–1756

    Article  CAS  PubMed  Google Scholar 

  • Elander RP (1983) Strain improvement and preservation of beta-lactam producing microorganisms. In: Demain AL, Solomon NA (eds) Antibiotics containing the beta-lactam structure I. Springer, Berlin, pp 97–146

    Google Scholar 

  • Fedorova ND, Khaldi N, Joardar VS et al (2008) Genomic islands in the pathogenic filamentous fungus Aspergillus fumigatus. PLoS Genet 4(4):e1000046

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fernandes M, Keller NP, Adams TH (1998) Sequence-specific binding by Aspergillus nidulans AflR, a C6 zinc cluster protein regulating mycotoxin biosynthesis. Mol Microbiol 28:1355–1365

    Article  CAS  PubMed  Google Scholar 

  • Fitzpatrick DA (2012) Horizontal gene transfer in fungi. FEMS Microbiol Lett 329:1–8

    Article  CAS  PubMed  Google Scholar 

  • Frisvad JC, Smedsgaard J, Larsen TO, Samson RA (2004) Mycotoxins, drugs and other extrolites produced by species in Penicillium subgenus Penicillium. Stud Mycol 49:201–241

    Google Scholar 

  • Frisvad JC, Smedsgaard J, Samson RA et al (2007) Fumonisin B2 production by Aspergillus niger. J Agric Food Chem 55:9727–9732

    Article  CAS  PubMed  Google Scholar 

  • García-Estrada C, Martín JF (2016) Biosynthetic gene clusters for relevant secondary metabolites produced by Penicillium roqueforti in blue cheeses. Appl Microbiol Biotechnol 100:8303–8313

    Article  PubMed  CAS  Google Scholar 

  • García-Estrada C, Vaca I, Ullán RV et al (2009) Molecular characterization of a fungal gene paralogue of the penicillin penDE gene of Penicillium chrysogenum. BMC Microbiol 9:104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gutiérrez S, Díez B, Montenegro E, Martín JF (1991a) Characterization of the Cephalosporium acremonium pcbAB gene encoding alpha-aminoadipyl-cysteinyl-valine synthetase, a large multidomain peptide synthetase: linkage to the pcbC gene as a cluster of early cephalosporin biosynthetic genes and evidence of multiple functional domains. J Bacteriol 173:2354–2365

    Article  PubMed  PubMed Central  Google Scholar 

  • Gutiérrez S, Díez B, Alvarez E et al (1991b) Expression of the penDE gene of Penicillium chrysogenum encoding isopenicillin N acyltransferase in Cephalosporium acremonium: production of benzylpenicillin by the transformants. Mol Gen Genet 225:56–64

    Article  PubMed  Google Scholar 

  • Gutiérrez S, Fierro F, Casqueiro J, Martín JF (1999) Gene organization and plasticity of the beta-lactam genes in different filamentous fungi. Antonie Van Leeuwenhoek 75(1–2):81–94

    Article  PubMed  Google Scholar 

  • Haarmann T, Ortel I, Tudzynski P, Keller U (2006) Identification of the cytochrome P450 monooxygenase that bridges the clavine and ergoline alkaloid pathways. Chembiochem 7:645–652

    Article  CAS  PubMed  Google Scholar 

  • Hall C, Dietrich FS (2007) The reacquisition of biotin prototrophy in Saccharomyces cerevisiae involved horizontal gene transfer, gene duplication and gene clustering. Genetics 177:2293–2307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall C, Brachat S, Dietrich FS (2005) Contribution of horizontal gene transfer to the evolution of Saccharomyces cerevisiae. Eukaryot Cell 4:1102–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawkins AR, Lamb HK, Smith M et al (1988) Molecular organisation of the quinic acid utilization (QUT) gene cluster in Aspergillus nidulans. Mol Gen Genet 214:224–231

    Article  CAS  PubMed  Google Scholar 

  • Houbraken J, Frisvad JC, Samson RA (2011) Fleming’s penicillin producing strain is not Penicillium chrysogenum but P. rubens. IMA Fungus 2(1):87–95

    Article  PubMed  PubMed Central  Google Scholar 

  • Hurst LD, Williams EJ, Pál C (2002) Natural selection promotes the conservation of linkage of co-expressed genes. Trends Genet 18:604–606

    Article  CAS  PubMed  Google Scholar 

  • Hurst LD, Pál C, Lercher MJ (2004) The evolutionary dynamics of eukaryotic gene order. Nat Rev Genet 5:299–310

    Article  CAS  PubMed  Google Scholar 

  • Jakubczyk D, Caputi L, Stevenson CE, Lawson DM, O’Connor SE (2016) Structural characterization of EasH (Aspergillus japonicus) – an oxidase involved in cycloclavine biosynthesis. Chem Commun (Camb) 52(99):14306–14309

    Article  CAS  Google Scholar 

  • Keller NP, Hohn TM (1997) Metabolic pathway gene clusters in filamentous fungi. Fungal Genet Biol 21:17–29

    Article  CAS  PubMed  Google Scholar 

  • Keller NP, Turner G, Bennett JW (2005) Fungal secondary metabolism – from biochemistry to genomics. Nat Rev Microbiol 3:937–947

    Article  CAS  PubMed  Google Scholar 

  • Khaldi N, Wolfe KH (2011) Evolutionary origins of the fumonisin secondary metabolite gene cluster in Fusarium verticillioides and Aspergillus niger. Int J Evol Biol 2011:423821

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khaldi N, Collemare J, Lebrun MH, Wolfe KH (2008) Evidence for horizontal transfer of a secondary metabolite gene cluster between fungi. Genome Biol 9:R18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim CF, Lee SK, Price J et al (2003) Cloning and expression analysis of the pcbAB-pcbC beta-lactam genes in the marine fungus Kallichroma tethys. Appl Environ Microbiol 69:1308–1314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosalková K, Domínguez-Santos R, Coton M et al (2015) A natural short pathway synthesizes roquefortine C but not meleagrin in three different Penicillium roqueforti strains. Appl Microbiol Biotechnol 99:7601–7612

    Article  PubMed  CAS  Google Scholar 

  • Laich F, Fierro F, Cardoza RE, Martín JF (1999) Organization of the gene cluster for biosynthesis of penicillin in Penicillium nalgiovense and antibiotic production in cured dry sausages. Appl Environ Microbiol 65:1236–1240

    CAS  PubMed  PubMed Central  Google Scholar 

  • Laich F, Fierro F, Martín JF (2002) Production of penicillin by fungi growing on food products: identification of a complete penicillin gene cluster in Penicillium griseofulvum and a truncated cluster in Penicillium verrucosum. Appl Environ Microbiol 68:1211–1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landan G, Cohen G, Aharonowitz Y et al (1990) Evolution of isopenicillin N synthase genes may have involved horizontal gene transfer. Mol Biol Evol 7:399–406

    CAS  PubMed  Google Scholar 

  • Lawrence JG (1997) Selfish operons and speciation by gene transfer. Trends Microbiol 5:355–359

    Article  CAS  PubMed  Google Scholar 

  • Lawrence J (1999) Selfish operons: the evolutionary impact of gene clustering in prokaryotes and eukaryotes. Curr Opin Genet Dev 9:642–648

    Article  CAS  PubMed  Google Scholar 

  • Lawrence JG, Roth JR (1996) Selfish operons: horizontal transfer may drive the evolution of gene clusters. Genetics 143(4):1843–1860

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lawrence DP, Kroken S, Pryor BM, Arnold AE (2011) Interkingdom gene transfer of a hybrid NPS/PKS from bacteria to filamentous Ascomycota. PLoS One 6(11):e28231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liras P, Rodríguez-García A, Martín JF (1998) Evolution of the clusters of genes for beta-lactam antibiotics: a model for evolutive combinatorial assembly of new beta-lactams. Int Microbiol 1:271–278

    CAS  PubMed  Google Scholar 

  • Marcet-Houben M, Gabaldón T (2010) Acquisition of prokaryotic genes by fungal genomes. Trends Genet 26:5–8

    Article  CAS  PubMed  Google Scholar 

  • Marcet-Houben M, Gabaldón T (2016) Horizontal acquisition of toxic alkaloid synthesis in a clade of plant associated fungi. Fungal Genet Biol 86:71–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martín JF (1998) New aspects of genes and enzymes for ß-lactam antibiotic biosynthesis. Appl Microbiol Biotechnol 50:1–15

    Article  PubMed  Google Scholar 

  • Martín JF (2000a) Molecular control of expression of penicillin biosynthesis genes in fungi: regulatory proteins interact with a bidirectional promoter region. J Bacteriol 182:2355–2362

    Article  PubMed  PubMed Central  Google Scholar 

  • Martín JF (2000b) Alpha-aminoadipyl-cysteinyl-valine synthetases in beta-lactam producing organisms. From Abraham’s discoveries to novel concepts of non-ribosomal peptide synthesis. J Antibiot (Tokyo) 53:1008–1021

    Article  Google Scholar 

  • Martín JF, Coton M (2016) Blue cheese: microbiota and fungal metabolites. In: Frias J, Martínez-Villaluenga C, Peñas E (eds) Fermented foods in health and disease prevention. Elsevier, New York, pp 275–304

    Google Scholar 

  • Martín JF, Liras P (1989) Organization and expression of genes involved in the biosynthesis of antibiotics and other secondary metabolites. Ann Rev Microbiol 43:173–206

    Article  Google Scholar 

  • Martín JF, Liras P (2016a) Evolutionary formation of gene clusters by reorganization: the meleagrin/roquefortine paradigm in different fungi. Appl Microbiol Biotechnol 100:1579–1587

    Article  PubMed  CAS  Google Scholar 

  • Martín JF, Liras P (2016b) Secondary metabolites in cheese fungi. In: Merillon JM, Ramawat KG (eds) Reference series in phytochemistry: fungal metabolites. Springer, Cham, pp 293–315

    Google Scholar 

  • Martín JF, Gutiérrez S, Aparicio JF (2000) Secondary metabolites. In: Lederberg J (ed) Encyclopedia of microbiology, vol 4, 2nd edn. Academic Press, San Diego, CA, pp 213–236

    Google Scholar 

  • Martín JF, Ullán RV, Casqueiro J (2004) Novel genes involved in cephalosporin biosynthesis: the three-component isopenicillin N epimerase system. Adv Biochem Eng Biotechnol 88:91–109

    PubMed  Google Scholar 

  • Martín JF, Zeillinger S, García-Estrada C (eds) (2014) Biosynthesis and molecular genetics of fungal secondary metabolites, I. Academic Press, New York

    Google Scholar 

  • Martín JF, Álvarez-Álvarez R, Liras P (2017) Clavine alkaloids gene clusters of Penicillium and related fungi: evolutionary combination of prenyltransferases, monooxygenases and dioxygenases. Genes 8(12):342

    Article  PubMed Central  CAS  Google Scholar 

  • Matasyoh JC, Dittrich B, Schueffler A, Laatsch H (2011) Larvicidal activity of metabolites from the endophytic Podospora sp. against the malaria vector Anopheles gambiae. Parasitol Res 108:561–566

    Article  PubMed  Google Scholar 

  • Nielsen JC, Grijseels S, Prigent S, Ji B, Dainat J, Nielsen KF, Frisvad JC, Workman M, Nielsen J (2017) Global analysis of biosynthetic gene clusters reveals vast potential of secondary metabolite production in Penicillium species. Nat Microbiol 2:17044

    Article  CAS  PubMed  Google Scholar 

  • Nota B, Timmermans M, Franken C et al (2008) Gene expression analysis of collembola in cadmium containing soil. Environ Sci Technol 42:8152–8157

    Article  CAS  PubMed  Google Scholar 

  • Osbourn A (2010) Secondary metabolic gene clusters: evolutionary toolkits for chemical innovation. Trends Genet 6(10):449–457

    Article  CAS  Google Scholar 

  • Palmer JM, Keller NP (2010) Secondary metabolism in fungi: does chromosomal location matter? Curr Opin Microbiol 13:431–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Price MN, Huang KH, Arkin AP, Alm EJ (2005) Operon formation is driven by co-regulation and not by horizontal gene transfer. Genome Res 15:809–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Proctor RH, Brown DW, Plattner RD, Desjardins AE (2003) Co-expression of 15 contiguous genes delineates a fumonisin biosynthetic gene cluster in Gibberella moniliformis. Fungal Genet Biol 38:237–249

    Article  CAS  PubMed  Google Scholar 

  • Proctor RH, McCormick SP, Alexander NJ, Desjardins AE (2009) Evidence that a secondary metabolic biosynthetic gene cluster has grown by gene relocation during evolution of the filamentous fungus Fusarium. Mol Microbiol 74:1128–1142

    Article  CAS  PubMed  Google Scholar 

  • Ragan MA, Harlow TJ, Beiko RG (2006) Do different surrogate methods detect lateral genetic transfer events of different relative ages? Trends Microbiol 14:4–8

    Article  CAS  PubMed  Google Scholar 

  • Richards TA, Dacks JB, Jenkinson JM et al (2006) Evolution of filamentous plant pathogens: gene exchange across eukaryotic kingdoms. Curr Biol 16:1857–1864

    Article  CAS  PubMed  Google Scholar 

  • Roelof D, Timmermans MJ, Hensbergen P et al (2012) A functional isopenicillin N synthase in an animal genome. Mol Biol Evol 30:541–548

    Article  CAS  Google Scholar 

  • Schmitt I, Torsten-Lumbsch H (2009) Ancient horizontal gene transfer from bacteria enhances biosynthetic capabilities of fungi. PLoS One 4(2):e4437

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shaaban M, Palmer JM, El-Naggar WA et al (2010) Involvement of transposon-like elements in penicillin gene cluster regulation. Fungal Genet Biol 47:423–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sieber CM, Lee W, Wong P, Münsterkötter M, Mewes HW, Schmeitzl C, Varga E, Berthiller F, Adam G, Güldener U (2014) The Fusarium graminearum genome reveals more secondary metabolite gene clusters and hints of horizontal gene transfer. PLoS One 9(10):e110311

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singer GA, Lloyd AT, Huminiecki LB, Wolfe KH (2005) Clusters of co-expressed genes in mammalian genomes are conserved by natural selection. Mol Biol Evol 22:767–775

    Article  CAS  PubMed  Google Scholar 

  • Slot JC, Hibbett DS (2007) Horizontal transfer of a nitrate assimilation gene cluster and ecological transitions in fungi: a phylogenetic study. PLoS One 2(10):e1097

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Slot JC, Rokas A (2011) Horizontal transfer of a large and highly toxic secondary metabolic gene cluster between fungi. Curr Biol 21:134–139

    Article  CAS  PubMed  Google Scholar 

  • Smith DJ, Burnham MK, Edwards J et al (1990) Cloning and heterologous expression of the penicillin biosynthetic gene cluster from Penicillum chrysogenum. Biotechnology (NY) 8:39–41

    CAS  Google Scholar 

  • Smith AW, Collis K, Ramsden M et al (1991) Chromosome rearrangements in improved cephalosporin C-producing strains of Acremonium chrysogenum. Curr Genet 19:235–237

    Article  PubMed  Google Scholar 

  • Spröte P, Hynes MJ, Hortschansky P et al (2008) Identification of the novel penicillin biosynthesis gene aatB of Aspergillus nidulans and its putative evolutionary relationship to this fungal secondary metabolism gene cluster. Mol Microbiol 70:445–461

    Article  PubMed  CAS  Google Scholar 

  • Ullán RV, Casqueiro J, Bañuelos O et al (2002) A novel epimerization system in fungal secondary metabolism involved in the conversion of isopenicillin N into penicillin N in Acremonium chrysogenum. J Biol Chem 277:46216–46225

    Article  PubMed  CAS  Google Scholar 

  • van den Berg MA, Albang R, Albermann K et al (2008) Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum. Nat Biotechnol 26:1161–1168

    Article  CAS  PubMed  Google Scholar 

  • Walton JD (2000) Horizontal gene transfer and the evolution of secondary metabolite gene clusters in fungi: an hypothesis. Fungal Genet Biol 30:167–171

    Article  CAS  PubMed  Google Scholar 

  • Ward JM, Hodgson JE (1993) The biosynthetic genes for clavulanic acid and cephamycin production occur as a ‘super-cluster’ in three Streptomyces. FEMS Microbiol Lett 110:239–242

    Article  CAS  PubMed  Google Scholar 

  • Weigel BJ, Burgett SG, Chen VJ et al (1988) Cloning and expression in Escherichia coli of isopenicillin N synthetase genes from Streptomyces lipmanii and Aspergillus nidulans. J Bacteriol 170:3817–3826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wenzl P, Wong L, Kwang-won K, Jefferson RA (2005) A functional screen identifies lateral transfer of beta-glucuronidase (gus) from bacteria to fungi. Mol Biol Evol 22:308–316

    Article  CAS  PubMed  Google Scholar 

  • Wisecaver JH, Rokas A (2015) Fungal metabolic gene clusters-caravans traveling across genomes and environments. Front Microbiol 6:161

    Article  PubMed  PubMed Central  Google Scholar 

  • Wong S, Wolfe KH (2005) Birth of a metabolic gene cluster in yeast by adaptive gene relocation. Nat Genet 37:777–782

    Article  CAS  PubMed  Google Scholar 

  • Yim G, Wang HH, Davies J (2007) Antibiotics as signalling molecules. Philos Trans R Soc Lond Ser B Biol Sci 362(1483):1195–1200

    Article  CAS  Google Scholar 

  • Yu J, Chang PK, Ehrlich KC et al (2004) Clustered pathway genes in aflatoxin biosynthesis. Appl Environ Microbiol 70:1253–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeilinger S, Martín JF, García-Estrada C (eds) (2015) Biosynthesis and molecular genetics of fungal secondary metabolites, II. Springer, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. Martín .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martín, J.F., Liras, P. (2019). Transfer of Secondary Metabolite Gene Clusters: Assembly and Reorganization of the β-Lactam Gene Cluster from Bacteria to Fungi and Arthropods. In: Villa, T., Viñas, M. (eds) Horizontal Gene Transfer. Springer, Cham. https://doi.org/10.1007/978-3-030-21862-1_14

Download citation

Publish with us

Policies and ethics