Skip to main content

Association Between Horizontal Gene Transfer and Adaptation of Gastric Human Pathogen Helicobacter pylori to the Host

  • Chapter
  • First Online:
Horizontal Gene Transfer

Abstract

Helicobacter pylori exhibit remarkable survival even in the vulnerable environments such as acidic, peristalsis, phagocytosis and oxidative stress. These stresses on the pathogen in the host induce damage of DNA in the pathogen. H. pylori acquired the ability to survive DNA damage by transformation-mediated recombination DNA repair. This repair mechanism helps the pathogen in successfully infecting the host. While many pathogens are competent for transformation only in certain environmental conditions such as starvation, H. pylori is competent throughout the growth. H. pylori may acquire the genetic material from the surrounding environment and contribute to evolution and genetic diversity. The mechanism in acquiring genetic material is ‘horizontal gene transfer’, the major contributing factor in the development of bacterial diversity. Horizontal gene transfer may help the pathogen H. pylori in acquiring antigenic determinants, genes of antibiotic resistance and virulence factors from other organisms to alter and influence pathogenicity. In this chapter, we review and discuss the association between horizontal gene transfer and adaptation of gastric human pathogen H. pylori to the host.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alm RA, Ling LS, Moir DT, King BL, Brown ED, Doig PC, Smith DR, Noonan B, Guild BC, deJonge BL, Carmel G, Tummino PJ, Caruso A, Uria-Nickelsen M, Mills DM, Ives C, Gibson R, Merberg D, Mills SD, Jiang Q, Taylor DE, Vovis GF, Trust TJ (1999) Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397:176–180

    Article  Google Scholar 

  • Ando TD, Israel A, Kusugami K, Blaser MJ (1999) HP0333, a member of the dprA family, is involved in natural transformation in Helicobacter pylori. J Bacteriol 181:5572–5580

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bardhan KD, Morton D, Perry MJ, Sanders DS, Morris P, Rowland A, Thompson M, Mitchell TR, Roberts PM (2001) Ranitidine bismuth citrate with clarithromycin alone or with metronidazole for the eradication of Helicobacter pylori. Aliment Pharmacol Ther 15(8):1199–1204

    Article  CAS  Google Scholar 

  • Bolor-Erdene M, Namdag B, Yamaoka Y, Jav S (2017) Antibiotic resistance of Helicobacter pylori in Mongolia. J Infect Dev Ctries 11:887–894

    Article  CAS  Google Scholar 

  • Boyanova L, Ilieva J, Gergova G, Spassova Z, Nikolov R, Davidkov L, Evstatiev I, Kamburov V, Katsarov N, Mitov I (2009) Evaluation of clinical and socio-demographic risk factors for antibacterial resistance of Helicobacter pylori in Bulgaria. J Med Microbiol 58:94–100

    Article  Google Scholar 

  • Campanale M, Nucera E, Ojetti V, Cesario V, Di Rienzo TA, D’Angelo G, Pecere S, Barbaro F, Gigante G, De Pasquale T, Rizzi A, Cammarota G, Schiavino D, Franceschi F, Gasbarrini A (2014) Nickel free-diet enhances the Helicobacter pylori eradication rate: a pilot study. Dig Dis Sci 59:1851–1855. 24595654. https://doi.org/10.1007/s10620-014-3060-3

    Article  CAS  PubMed  Google Scholar 

  • Challa C, Neelapu NRR (2018) Quorum sensing in Helicobacter pylori: role of biofilm and its implications for antibiotic resistance and immune evasion. In: Veera Bramha Chari P (ed) Implication of quorum sensing system in biofilm formation and virulence. Springer Nature, Switzerland, pp 361–381

    Google Scholar 

  • Challa S, Mohana Sheela G, Neelapu NRR (2018) Understanding the bacterial biofilm resistance to antibiotics and immune evasion. In: Veera Bramha Chari P (ed) Implication of quorum sensing system in biofilm formation and virulence. Springer Nature, Switzerland, pp 369–381

    Chapter  Google Scholar 

  • Dorer MS, Fero J, Salama NR (2010) DNA damage triggers genetic exchange in Helicobacter pylori. PLoS Pathog 6:e1001026

    Article  Google Scholar 

  • Eppinger M, Baar C, Linz B, Raddatz G, Lanz C, Keller H, Morelli G, Gressmann H, Achtman M, Schuster SC (2006) Who ate whom? Adaptive Helicobacter genomic changes that accompanied a host jump from early humans to large felines. PLoS Genet 2:e120. https://doi.org/10.1371/journal.pgen.0020120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez-Gonzalez E, Backert S (2014) DNA transfer in the gastric pathogen Helicobacter pylori. J Gastroenterol 49:594–604

    Article  CAS  Google Scholar 

  • Ferrero RL, Jenks PJ (2001) Invivo adaptation to the host. In: HLT M, Mendz GL, Hazell SL (eds) Helicobacter pylori: physiology and genetics, Chap. 46. ASM Press, Washington, DC. https://www.ncbi.nlm.nih.gov/books/NBK2450/

    Google Scholar 

  • Fischer F, Robbe-Saule M, Turlin E, Mancuso F, Michel V, Richaud P, Veyrier FJ, De Reuse H, Vinella D (2016) Characterization in Helicobacter pylori of a nickel transporter essential for colonization that was acquired during evolution by gastric Helicobacter species. PLoS Pathog 12(12):e1006018. https://doi.org/10.1371/journal.ppat.1006018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao W, Cheng H, Hu F, Li J, Wang L, Yang G, Xu L, Zheng X (2010) The evolution of Helicobacter pylori antibiotics resistance over 10 years in Beijing, China. Helicobacter 15:460–466

    Article  Google Scholar 

  • Garcia-Aljaro C, Balleste E, Muniesa M (2017) Beyond the canonical strategies of horizontal gene transfer in prokaryotes. Curr Opin Microbiol 38:95–105

    Article  CAS  Google Scholar 

  • Hofreuter D, Haas R (2002) Characterization of two cryptic Helicobacter pylori plasmids: a putative source for horizontal gene transfer and gene shuffling. J Bacteriol 184(10):2755–2766

    Article  CAS  Google Scholar 

  • Hofreuter D, Odenbreit S, Henke G, Haas R (1998) Natural competence for DNA transformation in Helicobacter pylori: identification and genetic characterization of the comB locus. Mol Microbiol 28:1027–1038

    Article  CAS  Google Scholar 

  • Hofreuter D, Odenbreit S, Haas R (2001) Natural transformation competence in Helicobacter pylori is mediated by the basic components of a type IV secretion system. Mol Microbiol 41:379–391

    Article  CAS  Google Scholar 

  • Huang YQ, Huang GR, Wu MH, Tang HY, Huang ZS, Zhou XH, Yu WQ, Su JW, Mo XQ, Chen BP, Zhao LJ (2015) Inhibitory effects of emodin, baicalin, schizandrin and berberine on hefA gene: treatment of Helicobacter pylori-induced multidrug resistance. World J Gastroenterol 21:4225

    Article  CAS  Google Scholar 

  • Kurtaran H, Uyar ME, Kasapoglu B, Turkay C, Yilmaz T, Akcay A, Kanbay M (2008) Role of Helicobacter pylori in pathogenesis of upper respiratory system diseases. J Natl Med Assoc 100:1224

    Article  Google Scholar 

  • Lee SM, Kim N, Kwon YH, Nam RH, Kim JM, Park JY, Lee YS, Lee DH (2018) Rdxa, frxa, and efflux pump in metronidazole-resistant Helicobacter pylori: their relation to clinical outcomes. J Gastroenterol Hepatol 33:681–688

    Article  CAS  Google Scholar 

  • Linz B, Windsor HM, Gajewski JP, Hake CM, Drautz DI, Schuster SC, Marshall BJ (2013) Helicobacter pylori genomic microevolution during naturally occurring transmission between adults. PLoS One 8(12):e82187. https://doi.org/10.1371/journal.pone.0082187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lood R, Erturk G, Mattiasson B (2017) Revisiting antibiotic resistance spreading in wastewater treatment plants—bacteriophages as a much neglected potential transmission vehicle. Front Microbiol 8:2298

    Article  Google Scholar 

  • Mohana Sheela G, Prathyusha AMVN, Neelapu NRR, Bramhachari PV (2018) Intra and inter-species communication in microbes: living with complex and sociable neighbors. In: Veera Bramha Chari P (ed) Implication of quorum sensing system in biofilm formation and virulence. Springer Nature, Switzerland, pp 7–16

    Chapter  Google Scholar 

  • Nammi D, Srimath-Tirumala-Peddinti RCPK, Neelapu NRR (2016) Identification of drug targets in Helicobacter pylori by in silico analysis: possible therapeutic implications for gastric cancer. Curr Cancer Drug Targets 16:79–98

    Article  CAS  Google Scholar 

  • Nammi D, Yarla NS, Chubarev VN, Tarasov VV, Barreto GE, Pasupulati CAM, Aliev G, Neelapu NRR (2017) A systematic in-silico analysis of Helicobacter pylori pathogenic islands for identification of novel drug target candidates. Curr Genomics 18:450–465

    Article  CAS  Google Scholar 

  • Ndip RN, Malange Takang AE, Ojongokpoko JE, Luma HN, Malongue A, Akoachere JF, Ndip LM, MacMillan M, Weaver LT (2008) Helicobacter pylori isolates recovered from gastric biopsies of patients with gastroduodenal pathologies in Cameroon: current status of antibiogram. Tropical Med Int Health 13:848–854

    Article  Google Scholar 

  • Nedenskov-Sorensen P, Bukholm G, Bovre K (1990) Natural competence for genetic transformation in Campylobacter pylori. J Infect Dis 161:365–366

    Article  CAS  Google Scholar 

  • Neelapu RR (2018) Role and regulation of transcriptional factors in gastric cancer. In: Nagaraju GP, Bramhachari PV (eds) Role of transcription factors in gastrointestinal malignancies. Springer, Heidelberg, pp 107–130

    Google Scholar 

  • Neelapu NRR, Pavani T (2013) Identification of novel drug targets in HpB38, HpP12, HpG27, Hpshi470, HpSJM180 strains of Helicobacter pylori: an insilico approach for therapeutic intervention. Curr Drug Targets 14:601–611

    Article  CAS  Google Scholar 

  • Neelapu NRR, Srimath-Tirumala-Peddinti RCPK, Nammi D, Pasupuleti ACM (2013) New strategies and paradigm for drug target discovery: a special focus on infectious diseases tuberculosis, malaria, leishmaniasis, trypanosomiasis and gastritis. Infect Disord Drug Targets 13(5):352–364

    Article  CAS  Google Scholar 

  • Neelapu NRR, Nammi D, ACM P, Surekha C (2014) Helicobacter pylori induced gastric inflammation, ulcer, and cancer: a pathogenesis perspective. Interdiscip J Microinflammation 1:113

    Google Scholar 

  • Neelapu NRR, Mutha NVR, Akula S (2015) Identification of potential drug targets in Helicobacter pylori strain HPAG1 by in silico genome analysis. Infect Disord Drug Targets 15:106–117

    Article  CAS  Google Scholar 

  • Neelapu NRR, Nammi D, Pasupuleti AMC, Challa S (2016) Targets against Helicobacter pylori and other tumor-producing bacteria. In: Villa TG, Vinas M (eds) New weapons to control bacterial growth. Springer, Heidelberg, pp 239–279

    Chapter  Google Scholar 

  • Neelapu NRR, Titash D, Surekha C (2018) Quorum sensing and its role in agrobacterium mediated gene transfer. In: Chari PVB (ed) Implication of quorum sensing system in biofilm formation and virulence. Springer Nature, Switzerland, pp 259–275

    Chapter  Google Scholar 

  • O’Rourke EJ, Chevalier C, Pinto AV, Thiberge JM, Ielpi L, Labigne A, Radicella JP (2003) Pathogen DNA as target for host-generated oxidative stress: role for repair of bacterial DNA damage in Helicobacter pylori colonization. Proc Natl Acad Sci U S A 100:2789–2794

    Article  Google Scholar 

  • Osaki T, Hanawa T, Manzoku T, Fukuda M, Kawakami H, Suzuki H, Yamaguchi H, Yan X, Taguchi H, Kurata S, Kamiya S (2006) Mutation of luxS affects motility and infectivity of Helicobacter pylori in gastric mucosa of a mongolian gerbil model. J Med Microbiol 55:1477–1485

    Article  CAS  Google Scholar 

  • Pasupuleti AMP, Nammi D, Neelapu NRR (2017) Screening and identification of drug targets and vaccine candidates for Helicobacter pylori strain Hp26695. Int J Recent Sci Res 8(4):16384–16395

    Article  Google Scholar 

  • Pot RG, Kusters JG, Smeets LC, Van Tongeren W, Vandenbroucke-Grauls CM, Bart A (2001) Interspecies transfer of antibiotic resistance between Helicobacter pylori and Helicobacter acinonychis. Antimicrob Agents Chemother 45(10):2975–2976

    Article  CAS  Google Scholar 

  • Savarino V, Mansi C, Mele MR, Bisso G, Mela GS, Saggioro A, Caroli M, Vigneri S, Termini R, Olivieri A, Tosatto R, Celle G (1997) A new 1-week therapy for Helicobacter pylori eradication: ranitidine bismuth citrate plus two antibiotics. Aliment Pharmacol Ther 11(4):699–703

    Article  CAS  Google Scholar 

  • Schmitt W, Odenbreit S, Heuermann D, Haas R (1995) Cloning of the Helicobacter pylori recA gene and functional characterization of its product. Mol Gen Genet 248:563–572

    Article  CAS  Google Scholar 

  • Schuster SC, Wittekindt NE, Linz B (2008) Molecular mechanisms of host-adaptation in Helicobacter. In: Yamaoka Y (ed) Helicobacter pylori: molecular genetics and cellular biology. Horizon Scientific Press, Wymondham, pp 193–204

    Google Scholar 

  • Smeets LC, Bijlsma JJ, Boomkens SY, Vandenbroucke-Grauls CM, Kusters JG (2000) comH, a novel gene essential for natural transformation of Helicobacter pylori. J Bacteriol 182:3948–3954

    Article  CAS  Google Scholar 

  • Sun QJ, Liang X, Zheng Q, Gu WQ, Liu WZ, Xiao SD, Lu H (2010) Resistance of Helicobacter pylori to antibiotics from 2000 to 2009 in Shanghai. World J Gastroenterol 16:5118

    Article  Google Scholar 

  • Tomb JF, White O, Kerlavage AR, Clayton RA, Sutton GG, Fleischmann RD, Ketchum KA, Klenk HP, Gill S, Dougherty BA, Nelson K, Quackenbush J, Zhou L, Kirkness EF, Peterson S, Loftus B, Richardson D, Dodson R, Khalak HG, Glodek A, McKenney K, Fitzegerald LM, Lee N, Adams MD, Hickey EK, Berg DE, Gocayne JD, Utterback TR, Peterson JD, Kelley JM, Cotton MD, Weidman JM, Fujii C, Bowman C, Watthey L, Wallin E, Hayes WS, Borodovsky M, Karp PD, Smith HO, Fraser CM, Venter JC (1997) The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388:539–547

    Article  CAS  Google Scholar 

  • Torres J, Camorlinga-Ponce M, Pérez-Pérez G, Madrazo-De la Garza A, Dehesa M, González-Valencia G, Muñoz O (2001) Increasing multidrug resistance in Helicobacter pylori strains isolated from children and adults in Mexico. J Clin Microbiol 39:2677–2680

    Article  CAS  Google Scholar 

  • Vinella D, Fischer F, Vorontsov E, Gallaud J, Malosse C, Michel V, Cavazza C, Robbe-Saule M, Richaud P, Chamot-Rooke J, Brochier-Armanet C, De Reuse H (2015) Evolution of Helicobacter: acquisition by gastric species of two histidine-rich proteins essential for colonization. PLoS Pathog 11(12):e1005312. https://doi.org/10.1371/journal.ppat.1005312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Von Wintersdorff CJ, Penders J, van Niekerk JM, Mills ND, Majumder S, van Alphen LB, Savelkoul PHM, Wolffs PFG (2016) Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Front Microbiol 7:173

    Google Scholar 

  • Wang Y, Roos KP, Taylor DE (1993) Transformation of Helicobacter pylori by chromosomal metronidazole resistance and by a plasmid with a selectable chloramphenicol resistance marker. J Gen Microbiol 139:2485–2493

    Article  CAS  Google Scholar 

  • Wüppenhorst N, Lenze F, Ross M, Kist M (2011) Isolation and eradication of a clinical isolate of Helicobacter pylori resistant to five antimicrobials in Germany. J Antimicrob Chemother 66:222–223

    Article  Google Scholar 

  • Zullo A, De Francesco V, Hassan C, Morini S, Vaira D (2007) The sequential therapy regimen for Helicobacter pylori eradication: a pooled-data analysis. Gut 56(10):1353–1357

    Article  CAS  Google Scholar 

Download references

Acknowledgements

CS and NNR are grateful to GITAM (Deemed to be University) for providing necessary facilities to carry out the research work and for extending constant support.

Authors Contribution

CS and NNR initiated the review, participated in writing and revised the manuscript.

Conflict of Interest

The authors declare that there is no potential conflict of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Challa, S., Neelapu, N.R.R. (2019). Association Between Horizontal Gene Transfer and Adaptation of Gastric Human Pathogen Helicobacter pylori to the Host. In: Villa, T., Viñas, M. (eds) Horizontal Gene Transfer. Springer, Cham. https://doi.org/10.1007/978-3-030-21862-1_10

Download citation

Publish with us

Policies and ethics