Skip to main content

Capacitance and Dissipation Factor

  • Chapter
  • First Online:
High Voltage Measurement Techniques

Part of the book series: Power Systems ((POWSYS))

  • 1209 Accesses

Abstract

The optimum performance of high-voltage equipment and apparatus of the electrical energy transmission depends largely on the design and quality of the insulating materials and the error-free execution of the insulation. Solid, liquid or gaseous dielectrics, also in combination, are used as insulation material. Important characteristics of the dielectrics that are exposed to high AC or impulse voltages are the relative permittivity and the dissipation factor (dielectric loss factor). This chapter explains the basics of both measurement quantities and the various analog and digital measurement methods. The basic design of measuring devices such as the Schering bridge with and without Wagner’s auxiliary arm, the current comparator bridge and the digital measuring system with A/D converters are discussed. Examples of the calibration of the measuring instruments are given. The properties of compressed gas capacitors according to Schering and Vieweg, which serve as a virtually lossless reference in the measurement of capacitance and dissipation factor, are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wimmershoff, R., Wendt, C.: Dielectric diagnostic of cables and cables connected with ring main units. In: Proceeding 10th ISH Montreal, paper 3549 (1997)

    Google Scholar 

  2. Hadid, S., Schmidt, U., Schufft, W., Rätzke, S.: Frequency dependence of the dissipation factor of PE/XLPE-insulated medium voltage cables. In: Proceeding 18th ISH Seoul, paper PD-37 (2013)

    Google Scholar 

  3. IEC 60250: Recommended methods for the determination of the permittivity and dielectric dissipation factor of electrical insulating materials at power, audio and radio frequencies including meter wavelengths (1969) German edition: DIN IEC 60250 (VDE 0303-4): Bestimmungen für elektrische Prüfungen von Isolierstoffen - Bestimmung der dielektrischen Eigenschaften (1969)

    Google Scholar 

  4. Liu, Y., Cao, XL., Li, XM.: Adjustable non-contact electrode and measurements on εr and tanδ of insulating materials. In: Proceeding 14th ISH Beijing, paper H-47 (2005)

    Google Scholar 

  5. Ohlen, M., Werelius, P., Cheng, J.: Dielectric response measurements in frequency, temperature and time domain. In: Proceeding 18th ISH Seoul (2013), paper OD7-06 (2013)

    Google Scholar 

  6. Homagk, C., Leibfried, T.: Insulation diagnosis using dissipation factor measurements. In: Proceeding 14th ISH Beijing, paper G-070 (2005)

    Google Scholar 

  7. Reumann, A., Liebschner, M., Küchler, A., Langens, A., Titze, J.: On-line monitoring of capacitance and dissipation factor of HV bushings. In: Proceeding 16th ISH Johannesburg, paper A-43 (2009)

    Google Scholar 

  8. Nikjoo, R. et al.: Insulation condition diagnostics of oil impregnated paper by utilizing power system transients. In: Proceeding 18th ISH Seoul, paper OD7-064 (2013)

    Google Scholar 

  9. Schering, H.: Brücke für Verlustmessungen. Zeitschr. f. Instrum. 40, 24 (1920)

    Google Scholar 

  10. Braun, A., Schon, K.: Harald Schering, seine Arbeiten und die heutigen Aufgaben der PTB auf den Gebieten Messwandler und Hochspannung. PTB-Mitt. 107, 227–236 (1997)

    Google Scholar 

  11. Wiessner, W.: Beseitigung von Störungen durch Streukapazitäten in Kapazitätsmessbrücken mit Wagnerscher Hilfsschaltung. Zeitschr. f. Instrum. 65, 139–144 (1957)

    Google Scholar 

  12. Baker, W.B.: Recent developments in 50 c/s bridge networks with inductively coupled ratio arms for capacitance and loss-tangent measurements. Proc. IEE Pt. A 109, 243–247 (1962)

    Google Scholar 

  13. Kusters, N.L., Petersons, O.: A transformer-ratio-arm bridge for high-voltage capacitance measurements. IEEE Trans. CE 82, 606–611 (1963)

    Google Scholar 

  14. Petersons, O.: A self-balancing high voltage capacitance bridge. IEEE IM 13, 216–224 (1964)

    Google Scholar 

  15. Zinn, E., Braun, A., Köhler, H.J.: Kapazitäts- und Verlustfaktormesseinrichtung mit selbsttätiger Abgleichung. Techn. Mess. 2, 924–925 (1977)

    Google Scholar 

  16. Seitz, P., Osvath, P.: Microcomputer controlled transformer ratio-arm bridge. In: Proceeding 3rd ISH Mailand, paper 43.11 (1979)

    Google Scholar 

  17. Osvath, P., Widmer, S.: Automatische Kapazitäts- und Verlustfaktor tanδ-Messung im industriellen Umfeld. E-wirtschaft 85, 911–913 (1986)

    Google Scholar 

  18. Gourney, P.: Capacitance and dissipation factor measurements under high voltage at BNM-LCIE. CPEM Digest, paper WEP5-5 (2000)

    Google Scholar 

  19. Tschirschwitz, T., Seitz, P.: Current transformers with electronic error compensation—An application for precision capacitance and dissipation factor measurements on large capacitive loads. Proc. 5th ISH Braunschweig, paper 73.13 (1987)

    Google Scholar 

  20. Braun, A., Richter, H.: Determination of the voltage dependence of the capacitance of high-voltage standard capacitors. In: Proceeding 5th ISH Braunschweig, paper 73.10 (1987)

    Google Scholar 

  21. Kaul, G., Plath, R., Kalkner, W.: Development of a computerised loss factor measurement system for different frequencies, including 0.1 Hz and 50/60 Hz. In: Proceeding 8th ISH Yokohama, paper 56.04 (1993)

    Google Scholar 

  22. Kornhuber, S., Markalous, S., Muhr, M., Strehl, T., Sumereder, C.: Comparison of methods for the dissipation factor measurement at practical examples. In: Proceeding 16th ISH Johannesburg, paper C-43 (2009)

    Google Scholar 

  23. Ramm, G., Roeissle, G., Latzel, H.-G.: Rechnergesteuerte Kalibrierung von Messeinrichtungen für Strom- und Spannungswandler. PTB-Mitt. 108, 188–200 (1998)

    Google Scholar 

  24. Ramm, G., Moser, H.: Calibration of electronic capacitance and dissipation factor bridges. IEEE Trans. IM 52, 396–399 (2003)

    Google Scholar 

  25. Ramm, G., Moser, H.: From the calculable AC resistor to capacitor dissipation factor determination on the basis of time constants. IEEE Trans. IM 50, 286–289 (2001)

    Google Scholar 

  26. Simmon, E.D., FitzPatrick, G.J., Petersons, O.: Calibration of dissipation factor standards. IEEE Trans. IM 48, 450–452 (1999)

    Google Scholar 

  27. Petersons, O.P., Anderson, W.E.: A wide-range high-voltage capacitance bridge with one ppm accuracy. IEEE Trans. IM 24, 336–344 (1975)

    Google Scholar 

  28. Latzel, H.-G., Schon, K.: Internationale Vergleichsmessungen von Kapazität und Verlustfaktor bei Hochspannung. PTB-Mitt. 99, 227–234 (1989)

    Google Scholar 

  29. Thoma, P.: Absolute calorimetric determination of dielectric loss factors at ω = 104 s−1 and 4.2 K and application to the measurement of loss factors of standard capacitors at room temperature. IEEE Trans IM 29, 328–330 (1980)

    Google Scholar 

  30. Hanke, R., Thoma, P.: Messung des Verlustfaktors von Normalkondensatoren. PTB-Jahresbericht, paper 3.2.11 (1980)

    Google Scholar 

  31. Thoma, P., Thiemig, M.: Kalibrierung des Verlustfaktors zweier Normalkondensatoren mit Hilfe eines kryokalorimetrischen Verlustfaktornormals zwischen 50 Hz und 10 kHz. PTB-Jahresbericht, paper 2.2.7 (1989)

    Google Scholar 

  32. Schering, H., Vieweg, R.: Ein Meßkondensator für Höchstspannungen. Z. f. Techn. Physik 9, 442–445 (1928)

    Google Scholar 

  33. Rungis, J., Brown, D. E.: Experimental study of factors affecting capacitance of high-voltage compressed-gas capacitors. IEE Proc. 128(Pt. A), 273–277 (1981)

    Article  Google Scholar 

  34. Latzel, H.-G., Schon, K.: Precise capacitance measurements of high voltage compressed gas capacitors. IEEE Trans. IM 36, 381–384 (1987)

    Google Scholar 

  35. Hillhouse, D.L., Peterson, A.E.: A 300-kV compressed gas standard capacitor with negligible voltage dependence. IEEE Trans. IM 22, 408–416 (1973)

    Google Scholar 

  36. Ivers-Tiffée, E., von Münch, W.: Werkstoffe der Elektrotechnik. Teubner, Wiesbaden (2007)

    Book  Google Scholar 

  37. Anderson, W.E., et al.: An international comparison of high voltage capacitor calibrations. IEEE Trans. PAS 97, 1217–1223 (1978)

    Article  Google Scholar 

  38. Latzel, H.-G.: Temperature-induced transient capacitance change in HV standard capacitors. In: Proceeding 7th ISH Dresden, paper 63.06 (1991)

    Google Scholar 

  39. Keller, A.: Konstanz der Kapazität von Preßgaskondenstoren. ETZ-A 80, 757–761 (1959)

    Google Scholar 

  40. Zinkernagel, J.: Modellrechnungen zur Spannungsabhängigkeit der Kapazität von Preßgaskondensatoren. Archiv für Elektrotechnik 60, 299–305 (1978)

    Article  Google Scholar 

  41. Zinkernagel, J.: A double frequency method for the determination of the voltage dependent capacitance variation of compressed gas capacitors. IEEE Trans. PAS 98, 306–309 (1979)

    Google Scholar 

  42. Leren, W., Latzel, H.-G.: Messung der Spannungsabhängigkeit der Kapazität von Druckgaskondensatoren mit dem Gleichspannungsverfahren. PTB-Mitt. 96, 83–87 (1986)

    Google Scholar 

  43. Kusters, N.L., Petersons, O.: The voltage coefficients of precision capacitors. IEEE Trans. CE 60, 612–621 (1963)

    Google Scholar 

  44. Latzel, H.-G.: A new method for detecting voltage dependence of capacitance in compressed gas capacitors. In: Proceeding 5th ISH Braunschweig, paper 73.11 (1987)

    Google Scholar 

  45. Latzel, H.-G., Kind, D.: Kinetic method for evaluating the voltage dependence of high-voltage compressed gas standard capacitors. In: Proceeding 6th ISH New Orleans, paper 47.06 (1989)

    Google Scholar 

  46. Latzel, H.G.: Frequency dependence of capacitance and dissipation factor in high-voltage compressed gas capacitors due to mechanical resonance. etz-Archiv 12, 313–319 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Schon .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schon, K. (2019). Capacitance and Dissipation Factor. In: High Voltage Measurement Techniques. Power Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-21770-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21770-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21769-3

  • Online ISBN: 978-3-030-21770-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics