Skip to main content

Organization of Nano-disks of Laponite® in Soft Colloidal Systems

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 223))

Abstract

The structure and properties of soft colloidal systems filled by nano-disks of Laponite® (Lap) are critically reviewed. The known Lap grades, chemical structure and physical properties are described. Various phases formed by exfoliated surface-charged Lap discs in aqueous media are analyzed, accounting for the kinetics of phase transformations and aging processes. The emerging interfacial structures are considered, as well as interactions of Lap discs with surfactants. Special attention is paid to formation of organically modified Lap (LapO). The latter can form homogeneous dispersions in non-aqueous media (organic solvents, soft non-ionic polymers, nematic and liquid crystals (LC)). LapO platelets exhibit various behavior patterns in ordered LC media, with specific effects emerging from interactions of disc-like LapO and rod-like LC molecules and carbon nanotubes. Promising practical applications of Lap based suspensions and nanomaterials based thereon are also outlined.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

BET:

Brunauer–Emmett–Teller adsorption theory

CEC:

cation exchange capacity

CNTs:

carbon nanotubes

DLS:

dynamic light scattering

DSC:

differential scanning calorimetry

Lap:

Laponite®

LapO:

organo-modified Lap

LC:

liquid crystal

LLC:

lyotropic liquid crystal

NMR:

nuclear magnetic resonance

SANS:

small-angle neutron scattering

SAXS:

small-angle X-ray scattering

SEM:

scanning electron microscopy

TEB:

transient electrically-induced birefringence

TEM:

transmission electron microscopy

XRD:

X-ray diffraction

5CB:

4-pentyl-4′-cyanobiphenyl, CH3(CH2)4C6H4C6H4CN

M5:

A mixture of cholesterol esters consisting of 30% cholesteryl formate (C28H46O2), 5% cholesteryl butyrate (C31H52O2) and 65% cholesteryl nonanoate C36H62O2

SDS:

sodium dodecyl sulfate, NaC12H25SO4

PSS-Na:

sodium polystyrene sulfonate, (CH2CHC6H4SO3Na)n

CTAB:

hexadecyltrimethylammonium bromide, C19H42N+Br

CTAC:

hexadecyltrimethylammonium chloride, C19H42N+Cl

DODAB:

dimethydioctodecylammonium bromide, C38H80N+Br

DODAC:

dimethydioctodecylammonium chloride, C38H80N+Cl

Brij 30:

polyoxyethylene(4)lauryl ether, C12H25(OCH2CH2)4OH

Brij 35:

polyethylene glycol dodecyl ether, C12H25(OCH2CH2)nOH, n ~ 23

PEG/PEO:

polyethylene glycol/oxide, H(OCH2CH2)nOH, PEG: Mw < 20 × 103 g/mol, PEO: Mw >  20 × 103 g/mol

SAP:

oly(isobutylene) based stabilizer SAP 230TP (Infineum, UK)

References

  1. B.S. Neumann, Synthetic Hectorite-Type Clay Minerals, US patent # 3586478 (1962)

    Google Scholar 

  2. S. Jatav, Y.M. Joshi, Phase behavior of aqueous suspension of Laponite: new insights with microscopic evidence. Langmuir 33, 2370–2377 (2017)

    Article  Google Scholar 

  3. M. Pilavtepe, S.M. Recktenwald, R. Schuhmann et al., Macro-and microscale structure formation and aging in different arrested states of Laponite dispersions. J. Rheol. (N. Y. N. Y.) 62, 593–605 (2018)

    Article  ADS  Google Scholar 

  4. T.B. Becher, C.B. Braga, D.L. Bertuzzi et al., The Structure–property relationship in LAPONITE® materials: from wigner glasses to strong self-healing hydrogels formed by non-covalent interactions. Soft Matter. 15, 1278–1289 (2019)

    Article  ADS  Google Scholar 

  5. X. Huang, H. Shen, J. Sun et al., Nanoscale Laponite as a potential shale inhibitor in water-based drilling fluid for stabilization of wellbore stability and mechanism study. ACS Appl. Mater. Interfaces. 10, 33252–33259 (2018)

    Article  Google Scholar 

  6. F. Liu, G.-C. Jiang, K. Wang, J. Wang, Laponite nanoparticle as a multi-functional additive in water-based drilling fluids. J. Mater. Sci. 52, 12266–12278 (2017)

    Article  ADS  Google Scholar 

  7. J.L. Dávila, M.A. d’Ávila, Laponite as a rheology modifier of alginate solutions: physical gelation and aging evolution. Carbohydr. Polym. 157, 1–8 (2017)

    Article  Google Scholar 

  8. S. Mishra, P. Rani, G. Sen, K.P. Dey, Preparation, properties and application of hydrogels: a review, in Hydrogels (Springer, 2018), pp. 145–173

    Google Scholar 

  9. P. Liu, Z. Peng, Q. Zhang, Nanocomposite hydrogel with varying number of repeating oxyethylene units: adjustable pore structure and thermo-responsibility. React. Funct. Polym. 117, 43–51 (2017)

    Article  Google Scholar 

  10. M. Fatnassi, C.-H. Solterbeck, M. Es-Souni, Clay nanomaterial thin film electrodes for electrochemical energy storage applications. RSC Adv. 4, 46976–46979 (2014)

    Article  Google Scholar 

  11. Anonymous, Laponite. Performance Additives. BYK. Technical Information B-RI 21 (2018)

    Google Scholar 

  12. M. Ghadiri, W. Chrzanowski, R. Rohanizadeh, Biomedical applications of cationic clay minerals. RSC Adv. 5, 29467–29481 (2015)

    Article  Google Scholar 

  13. H. Tomás, C.S. Alves, J. Rodrigues, Laponite®: a key nanoplatform for biomedical applications? Nanomed. Nanotechnol. Biol. Med. 14, 2407–2420 (2018)

    Article  Google Scholar 

  14. B. Brunier, N. Sheibat-Othman, M. Chniguir et al., Investigation of four different Laponite clays as stabilizers in pickering emulsion polymerization. Langmuir 32, 6046–6057 (2016)

    Article  Google Scholar 

  15. D.W. Thompson, J.T. Butterworth, The nature of Laponite and its aqueous dispersions. J. Colloid Interface Sci. 151, 236–243 (1992)

    Article  ADS  Google Scholar 

  16. R.P. Mohanty, Y.M. Joshi, Chemical stability phase diagram of aqueous Laponite dispersions. Appl. Clay Sci. 119, 243–248 (2016)

    Article  Google Scholar 

  17. E.S.H. Leach, A. Hopkinson, K. Franklin, J.S. van Duijneveldt, Nonaqueous suspensions of Laponite and montmorillonite. Langmuir 21, 3821–3830 (2005)

    Article  Google Scholar 

  18. J.J. Fripiat, M. Letellier, J.M. Cases et al., Comportement microdynamique et thermodynamique de l’eau dans les suspensions argileuses, in Studies in Surface Science and Catalysis, ed. by J. Rouquerol, K.S.W. Sing (Elsevier, 1982), pp. 449–477

    Google Scholar 

  19. A. Mourchid, P. Levitz, Long-term gelation of Laponite aqueous dispersions. Phys. Rev. E 57, R4887 (1998)

    Article  ADS  Google Scholar 

  20. S. Jatav, Y.M. Joshi, Chemical stability of Laponite in aqueous media. Appl. Clay Sci. 97, 72–77 (2014)

    Article  Google Scholar 

  21. S.L. Tawari, D.L. Koch, C. Cohen, Electrical double-layer effects on the Brownian diffusivity and aggregation rate of Laponite clay particles. J. Colloid Interface Sci. 240, 54–66 (2001)

    Article  ADS  Google Scholar 

  22. M. Manilo, N. Lebovka, S. Barany, Characterization of the electric double layers of multi-walled carbon nanotubes, Laponite and nanotube + Laponite hybrids in aqueous suspensions. Colloids Surf. A Physicochem. Eng. Asp 462, 211–216 (2014)

    Article  Google Scholar 

  23. J. Labanda, J. Llorens, Influence of sodium polyacrylate on the rheology of aqueous Laponite dispersions. J. Colloid Interface Sci. 289, 86–93 (2005)

    Article  ADS  Google Scholar 

  24. J. Labanda, J. Sabaté, J. Llorens, Rheology changes of Laponite aqueous dispersions due to the addition of sodium polyacrylates of different molecular weights. Colloids Surf. A Physicochem. Eng. Asp 301, 8–15 (2007)

    Article  Google Scholar 

  25. A.Y. Huang, J.C. Berg, High-salt stabilization of Laponite clay particles. J. Colloid Interface Sci. 296, 159–164 (2006)

    Article  ADS  Google Scholar 

  26. S. Zhang, Q. Lan, Q. Liu et al., Aqueous foams stabilized by Laponite and CTAB. Colloids Surf. A Physicochem. Eng. Asp 317, 406–413 (2008)

    Article  Google Scholar 

  27. J.D.F. Ramsay, S.W. Swanton, J. Bunce, Swelling and dispersion of smectite clay colloids: determination of structure by neutron diffraction and small-angle neutron scattering. J. Chem. Soc., Faraday Trans. 86, 3919–3926 (1990)

    Article  Google Scholar 

  28. L. Rosta, H.R. Von Gunten, Light scattering characterization of laporite sols. J. Colloid Interface Sci. 134, 397–406 (1990)

    Article  ADS  Google Scholar 

  29. T. Nicolai, S. Cocard, Light scattering study of the dispersion of Laponite. Langmuir 16, 8189–8193 (2000)

    Article  Google Scholar 

  30. A. Bakk, J.O. Fossum, G.J. da Silva et al., Viscosity and transient electric birefringence study of clay colloidal aggregation. Phys. Rev. E 65, 21407 (2002)

    Article  ADS  Google Scholar 

  31. S. Ali, R. Bandyopadhyay, Use of ultrasound attenuation spectroscopy to determine the size distribution of clay tactoids in aqueous suspensions. Langmuir 29, 12663–12669 (2013)

    Article  Google Scholar 

  32. A. Karpovich, M. Vlasova, N. Sapronova et al., Exfoliation dynamics of Laponite clay in aqueous suspensions studied by NMR relaxometry. Orient. J. Chem. 32, 1679–1683 (2016)

    Article  Google Scholar 

  33. B. Ruzicka, E. Zaccarelli, A fresh look at the Laponite phase diagram. Soft Matter 7, 1268–1286 (2011)

    Article  ADS  Google Scholar 

  34. H. Iwase, T. Ogura, H. Sakuma et al., Structural investigation of hectorite aqueous suspensions by dielectric microscopy and small-angle neutron scattering coupling with rheological measurement. Appl. Clay Sci. 157, 24–30 (2018)

    Article  Google Scholar 

  35. S. Jogun, C.F. Zukoski, Rheology of dense suspensions of platelike particles. J. Rheol. (N. Y. N. Y.) 40, 1211–1232 (1996)

    Article  ADS  Google Scholar 

  36. B. Ruzicka, E. Zaccarelli, L. Zulian et al., A phase separation in diluted Laponite suspensions: evidence of empty liquid and equilibrium gel states. ArXiv e-prints (2010)

    Google Scholar 

  37. W.K. Kegel, H.N.W. Lekkerkerker, Colloidal gels: clay goes patchy. Nat. Mater. 10, 5 (2011)

    Article  ADS  Google Scholar 

  38. J. Yu, O. Andersson, G.P. Johari, Effects of nanometer-size Laponite disks on thermal conductivity and specific heat of water and ice, and the gelation time. Colloid Polym. Sci. 293, 901–911 (2015)

    Article  Google Scholar 

  39. L. Onsager, The effects of shape on the interaction of colloidal particles. Ann. N. Y. Acad. Sci. 51, 627–659 (1949). https://doi.org/10.1111/j.1749-6632.1949.tb27296.x

    Article  ADS  Google Scholar 

  40. P.A. Forsyth, S. Marčelja, D.J. Mitchell, B.W. Ninham, Onsager transition in hard plate fluid. J. Chem. Soc. Faraday Trans. 2 Mol. Chem. Phys. 73, 84–88 (1977)

    Article  Google Scholar 

  41. R. Eppenga, D. Frenkel, Monte Carlo study of the isotropic and nematic phases of infinitely thin hard platelets. Mol. Phys. 52, 1303–1334 (1984)

    Article  ADS  Google Scholar 

  42. J.A.C. Veerman, D. Frenkel, Phase behavior of disklike hard-core mesogens. Phys. Rev. A 45, 5632 (1992)

    Article  ADS  Google Scholar 

  43. H.H. Wensink, H.N.W. Lekkerkerker, Phase diagram of hard colloidal platelets: a theoretical account. Mol. Phys. 107, 2111–2118 (2009)

    Article  ADS  Google Scholar 

  44. J.-C.P. Gabriel, C. Sanchez, P. Davidson, Observation of nematic liquid-crystal textures in aqueous gels of smectite clays. J. Phys. Chem. 100, 11139–11143 (1996)

    Article  Google Scholar 

  45. M. Dijkstra, J.-P. Hansen, P.A. Madden, Statistical model for the structure and gelation of smectite clay suspensions. Phys. Rev. E 55, 3044 (1997)

    Article  ADS  Google Scholar 

  46. B.J. Lemaire, P. Panine, J.C.P. Gabriel, P. Davidson, The measurement by SAXS of the nematic order parameter of Laponite gels. EPLEurophys. Lett. 59, 55 (2002)

    Article  ADS  Google Scholar 

  47. F.A.M. Marques, R. Angelini, G. Ruocco, B. Ruzicka, Isotopic effect on the gel and glass formation of a charged colloidal clay: Laponite. J. Phys. Chem. B 121, 4576–4582 (2017)

    Article  Google Scholar 

  48. N. Taco, C. Sthane, Structure of gels and aggregates of disk-like colloids. Eur. Phys. J. E 5, 221–227 (2001)

    Article  Google Scholar 

  49. B. Jonsson, C. Labbez, B. Cabane, Interaction of nanometric clay platelets. Langmuir 24, 11406–11413 (2008)

    Article  Google Scholar 

  50. A. Shahin, Y.M. Joshi, Physicochemical effects in aging aqueous Laponite suspensions. Langmuir 28, 15674–15686 (2012)

    Article  Google Scholar 

  51. A. Shahin, Y.M. Joshi, S.A. Ramakrishna, Interface-induced anisotropy and the nematic glass/gel state in jammed aqueous Laponite suspensions. Langmuir 27, 14045–14052 (2011)

    Article  Google Scholar 

  52. R.K. Pujala, H.B. Bohidar, Kinetics of anisotropic ordering in Laponite dispersions induced by a water-air interface. Phys. Rev. E 88, 52310 (2013)

    Article  ADS  Google Scholar 

  53. M. Manilo, P. Boltovets, B. Snopok et al., Anomalous interfacial architecture in Laponite aqueous suspensions on a gold surface. Colloids Surf. A Physicochem. Eng. Asp 520, 883–891 (2017)

    Article  Google Scholar 

  54. J. Wan, T.K. Tokunaga, Partitioning of clay colloids at air–water interfaces. J. Colloid Interface Sci. 247, 54–61 (2002)

    Article  ADS  Google Scholar 

  55. E.L. Hansen, S. Jabbari-Farouji, H. Mauroy et al., Orientational order in a glass of charged platelets with a concentration gradient. Soft Matter 9, 9999–10004 (2013)

    Article  ADS  Google Scholar 

  56. N.I. Lebovka, Y.Y. Tarasevich, N.V. Vygornitskii, Vertical drying of a suspension of sticks: Monte Carlo simulation for continuous two-dimensional problem. Phys. Rev. E 97, 22136 (2018)

    Article  ADS  Google Scholar 

  57. J.J. Velasco-Velez, C.H. Wu, T.A. Pascal et al., The structure of interfacial water on gold electrodes studied by x-ray absorption spectroscopy. Science 80, 1259437 (2014)

    Google Scholar 

  58. M.A. Ricci, V. Tudisca, F. Bruni et al., The structure of water near a charged crystalline surface. J. Non Cryst. Solids 407, 418–422 (2015)

    Article  ADS  Google Scholar 

  59. V. Tudisca, F. Bruni, E. Scoppola et al., Neutron diffraction study of aqueous Laponite suspensions at the NIMROD diffractometer. Phys. Rev. E 90, 32301 (2014)

    Article  ADS  Google Scholar 

  60. N. Pawar, H.B. Bohidar, Hydrophobic hydration mediated universal self-association of colloidal nanoclay particles. Colloids Surf. A Physicochem. Eng. Asp 333, 120–125 (2009)

    Article  Google Scholar 

  61. N. Joshi, K. Rawat, R.K. Pujala, H.B. Bohidar, Ionic liquid induced surface exclusion and anomalous first-order phase transition in Laponite dispersions. J. Mol. Liq. 207, 177–184 (2015)

    Article  Google Scholar 

  62. H.J.M. Hanley, C.D. Muzny, B.D. Butler, Surfactant adsorption on a clay mineral: application of radiation scattering. Langmuir 13, 5276–5282 (1997)

    Article  Google Scholar 

  63. T. Nakamura, J.K. Thomas, Formation of surfactant double layers on Laponite clay colloids. Langmuir 3, 234–239 (1987)

    Article  Google Scholar 

  64. C. Pizzey, S. Klein, E. Leach et al., Suspensions of colloidal plates in a nematic liquid crystal: a small angle x-ray scattering study. J. Phys.: Condens. Matter 16, 2479 (2004)

    ADS  Google Scholar 

  65. S. Borsacchi, M. Geppi, L. Ricci et al., Interactions at the surface of organophilic-modified Laponites: a multinuclear solid-state NMR study. Langmuir 23, 3953–3960 (2007)

    Article  Google Scholar 

  66. C.-F. Li, S.-Y. Zhang, J. Wang et al., Interactions between Brij surfactants and Laponite nanoparticles and emulsions stabilized by their mixtures. Acta Chim. Sin. 66, 2313–2320 (2008)

    Google Scholar 

  67. Q. Liu, S. Zhang, D. Sun, J. Xu, Foams stabilized by Laponite nanoparticles and alkylammonium bromides with different alkyl chain lengths. Colloids Surf. A Physicochem. Eng. Asp 355, 151–157 (2010)

    Article  Google Scholar 

  68. V. Savenko, L. Bulavin, M. Rawiso et al., Sedimentation stability and aging of aqueous dispersions of Laponite in the presence of cetyltrimethylammonium bromide. Phys. Rev. E 88, 52301 (2013)

    Article  ADS  Google Scholar 

  69. M.V. Manilo, N. Lebovka, S. Barany, Combined effect of cetyltrimethylammonium bromide and Laponite platelets on colloidal stability of carbon nanotubes in aqueous suspensions. J. Mol. Liq. 235, 104–110 (2017)

    Article  Google Scholar 

  70. J. Connolly, J.S. van Duijneveldt, S. Klein et al., Effect of surfactant and solvent properties on the stacking behavior of non-aqueous suspensions of organically modified clays. Langmuir 22, 6531–6538 (2006)

    Article  Google Scholar 

  71. Y. Lambert, D.R. Le, Y. Mugnier et al., Second-harmonic generation imaging of LiIO 3/Laponite nanocomposite waveguides. Jpn. J. Appl. Phys. 45, 7525 (2006)

    Article  ADS  Google Scholar 

  72. O. Yaroshchuk, S. Tomylko, O. Kovalchuk, N. Lebovka, Liquid crystal suspensions of carbon nanotubes assisted by organically modified Laponite nanoplatelets. Carbon N. Y. 68, 389–398 (2014)

    Article  Google Scholar 

  73. E.A. Lysenkov, N.I. Lebovka, Y.V. Yakovlev et al., Percolation behaviour of polypropylene glycol filled with multiwalled carbon nanotubes and Laponite. Compos. Sci. Technol. 72, 1191–1195 (2012)

    Article  Google Scholar 

  74. C. Pizzey, J. Van Duijneveldt, S. Klein, Liquid crystal clay composites. Mol. Cryst. Liq. Cryst. 409, 51–57 (2004)

    Article  Google Scholar 

  75. W. Li, L. Yu, G. Liu et al., Oil-in-water emulsions stabilized by Laponite particles modified with short-chain aliphatic amines. Colloids Surf. A Physicochem. Eng. Asp 400, 44–51 (2012)

    Article  Google Scholar 

  76. T.J. Bruno, A. Lewandowska, F. Tsvetkov et al., Wall-coated open-tubular column chromatography on an organo–clay stationary phase. J. Chromatogr. A 973, 143–149 (2002)

    Article  Google Scholar 

  77. P.A. Mirau, J.L. Serres, D. Jacobs et al., Structure and dynamics of surfactant interfaces in organically modified clays. J. Phys. Chem. B 112, 10544–10551 (2008)

    Article  Google Scholar 

  78. B. Wang, M. Zhou, Z. Rozynek, J.O. Fossum, Electrorheological properties of organically modified nanolayered Laponite: influence of intercalation, adsorption and wettability. J. Mater. Chem. 19, 1816–1828 (2009)

    Article  Google Scholar 

  79. W. Loyens, P. Jannasch, F.H.J. Maurer, Poly (ethylene oxide)/Laponite nanocomposites via melt-compounding: effect of clay modification and matrix molar mass. Polymer (Guildf) 46, 915–928 (2005)

    Article  Google Scholar 

  80. L.A. Bulavin, L.N. Lisetski, S.S. Minenko et al., Microstructure and optical properties of nematic and cholesteric liquid crystals doped with organo-modified platelets. J. Mol. Liq. 267, 279–285 (2018)

    Article  Google Scholar 

  81. L.M. Daniel, R.L. Frost, H.Y. Zhu, Edge-modification of Laponite with dimethyl-octylmethoxysilane. J. Colloid Interface Sci. 321, 302–309 (2008)

    Article  ADS  Google Scholar 

  82. S.P. Patil, R. Mathew, T.G. Ajithkumar et al., Gelation of covalently edge-modified Laponites in aqueous media. 1. Rheology and nuclear magnetic resonance. J. Phys. Chem. B 112, 4536–4544 (2008)

    Article  Google Scholar 

  83. V.S. Savenko, Aging of Laponite aqueous suspensions in presence of anionic surfactant. Bull. Taras. Shevchenko Natl. Univ. Kyiv. Ser. Phys. Math. 2, 277–282 (2014)

    Google Scholar 

  84. R.-M. Guillermic, A. Salonen, J. Emile, A. Saint-Jalmes, Surfactant foams doped with Laponite: unusual behaviors induced by aging and confinement. Soft Matter 5, 4975–4982 (2009)

    Article  ADS  Google Scholar 

  85. V. Savenko, L. Bulavin, M. Rawiso, N. Lebovka, Aging of aqueous Laponite dispersions in the presence of sodium polystyrene sulfonate. Ukr Phys. J. 59, 589–595 (2014)

    Article  Google Scholar 

  86. Y. Aray, M. Marquez, J. Rodríguez et al., Electrostatics for exploring the nature of the hydrogen bonding in polyethylene oxide hydration. J. Phys. Chem. B 108, 2418–2424 (2004)

    Article  Google Scholar 

  87. M. Miyazaki, T. Maeda, K. Hirashima et al., PEG-based nanocomposite hydrogel: thermoresponsive sol-gel transition controlled by PLGA-PEG-PLGA molecular weight and solute concentration. Polymer (Guildf) 115, 246–254 (2017). https://doi.org/10.1016/j.polymer.2017.03.016

    Article  Google Scholar 

  88. A.K. Gaharwar, C.P. Rivera, C.-J. Wu, G. Schmidt, Transparent, elastomeric and tough hydrogels from poly (ethylene glycol) and silicate nanoparticles. Acta Biomater. 7, 4139–4148 (2011)

    Article  Google Scholar 

  89. J. Zebrowski, V. Prasad, W. Zhang et al., Shake-gels: shear-induced gelation of Laponite–PEO mixtures. Colloids Surf. A Physicochem. Eng. Asp 213, 189–197 (2003)

    Article  Google Scholar 

  90. D.C. Pozzo, L.M. Walker, Reversible shear gelation of polymer–clay dispersions. Colloids Surf. A Physicochem. Eng. Asp 240, 187–198 (2004)

    Article  Google Scholar 

  91. V. Can, O. Okay, Shake gels based on Laponite–PEO mixtures: effect of polymer molecular weight. Des. Monomers Polym. 8, 453–462 (2005)

    Article  Google Scholar 

  92. M.M. Ramos-Tejada, P.F. Luckham, Shaken but not stirred: The formation of reversible particle—polymer gels under shear. Colloids Surf. A Physicochem. Eng. Asp 471, 164–169 (2015). https://doi.org/10.1016/j.colsurfa.2015.02.021

    Article  Google Scholar 

  93. A. Nelson, T. Cosgrove, A small-angle neutron scattering study of adsorbed poly (ethylene oxide) on Laponite. Langmuir 20, 2298–2304 (2004)

    Article  Google Scholar 

  94. R. De Lisi, M. Gradzielski, G. Lazzara et al., Aqueous Laponite clay dispersions in the presence of poly (ethylene oxide) or poly (propylene oxide) oligomers and their triblock copolymers. J. Phys. Chem. B 112, 9328–9336 (2008)

    Article  Google Scholar 

  95. J. Lal, L. Auvray, Interaction of polymer with clays. J. Appl. Crystallogr. 33, 673–676 (2000)

    Article  Google Scholar 

  96. J. Lal, L. Auvray, Interaction of polymer with discotic clay particles. Mol. Cryst. Liq. Cryst. 356, 503–515 (2001)

    Article  Google Scholar 

  97. A. Thuresson, M. Segad, T.S. Plivelic, M. Skepö, Flocculated Laponite-PEG/peo dispersions with multivalent salt: a SAXS, Cryo-TEM, and computer simulation study. J. Phys. Chem. C 121, 7387–7396 (2017)

    Article  Google Scholar 

  98. A. Thuresson, M. Segad, M. Turesson, M. Skepö, Flocculated Laponite–PEG/PEO dispersions with monovalent salt, a SAXS and simulation study. J. Colloid Interface Sci. 466, 330–342 (2016)

    Article  ADS  Google Scholar 

  99. S. Morikubo, Y. Sekine, T. Ikeda-Fukazawa, Structure and dynamics of water in mixed solutions including Laponite and PEO. J. Chem. Phys. 134, 44905 (2011)

    Article  Google Scholar 

  100. A. Nelson, T. Cosgrove, Dynamic light scattering studies of poly (ethylene oxide) adsorbed on Laponite: Layer conformation and its effect on particle stability. Langmuir 20, 10382–10388 (2004)

    Article  Google Scholar 

  101. H.A. Baghdadi, H. Sardinha, S.R. Bhatia, Rheology and gelation kinetics in Laponite dispersions containing poly (ethylene oxide). J. Polym. Sci., Part B: Polym. Phys. 43, 233–240 (2005)

    Article  ADS  Google Scholar 

  102. P. Mongondry, T. Nicolai, J.-F. Tassin, Influence of pyrophosphate or polyethylene oxide on the aggregation and gelation of aqueous Laponite dispersions. J. Colloid Interface Sci. 275, 191–196 (2004)

    Article  ADS  Google Scholar 

  103. S. Kishore, Y. Chen, P. Ravindra, S.R. Bhatia, The effect of particle-scale dynamics on the macroscopic properties of disk-shaped colloid–polymer systems. Colloids Surf. A Physicochem. Eng. Asp 482, 585–595 (2015)

    Article  Google Scholar 

  104. S. Morariu, M. Bercea, Flow behavior of poly (ethylene oxide)-Laponite nanocomposite solutions. J. Optoelectron. Adv. Mater. 9, 1005–1009 (2007)

    Google Scholar 

  105. S. Morariu, M. Bercea, Influence of poly (ethylene oxide) on the aggregation and gelation of Laponite dispersions in water. Rev. Roum. Chim. 52, 147–152 (2007)

    Google Scholar 

  106. S. Morariu, M. Bercea, Effect of temperature and aging time on the rheological behavior of aqueous poly (ethylene glycol)/Laponite RD dispersions. J. Phys. Chem. B 116, 48–54 (2011)

    Article  Google Scholar 

  107. S. Morariu, M. Bercea, Gels based poly (ethylene oxide)-Laponite mixtures. Rev. Roum. Chim. 51, 435 (2006)

    Google Scholar 

  108. S. Morariu, M. Bercea, Viscoelastic properties of Laponite RD dispersions containing PEO with different molecular weights. Rev. Roum. Chim. 60, 777–785 (2015)

    Google Scholar 

  109. S. Morariu, M. Bercea, Effect of addition of polymer on the rheology and electrokinetic features of Laponite RD aqueous dispersions. J. Chem. Eng. Data 54, 54–59 (2009)

    Article  Google Scholar 

  110. A.K. Atmuri, G.A. Peklaris, S. Kishore, S.R. Bhatia, A re-entrant glass transition in colloidal disks with adsorbing polymer. Soft Matter 8, 8965–8971 (2012)

    Article  ADS  Google Scholar 

  111. H.A. Baghdadi, E.C. Jensen, N. Easwar, S.R. Bhatia, Evidence for re-entrant behavior in Laponite–PEO systems. Rheol. Acta 47, 121–127 (2008)

    Article  Google Scholar 

  112. H.A. Baghdadi, J. Parrella, S.R. Bhatia, Long-term aging effects on the rheology of neat Laponite and Laponite–PEO dispersions. Rheol. Acta 47, 349–357 (2008)

    Article  Google Scholar 

  113. H. Baghdadi, S.R. Bhatia, E.E.C. Jensen, N. Easwar, Evidence of re-entrant behavior in Laponite-PEO systems. MRS Online Proc. Libr. Arch. 899 (2005)

    Google Scholar 

  114. L. Zulian, F.A. de Melo Marques, E. Emilitri et al., Dual aging behaviour in a clay–polymer dispersion. Soft Matter 10, 4513–4521 (2014)

    Article  ADS  Google Scholar 

  115. T. Takahashi, Y. Yamada, K. Kataoka, Y. Nagasaki, Preparation of a novel PEG-clay hybrid as a DDS material: dispersion stability and sustained release profiles. J. Control Release 107, 408–416 (2005). https://doi.org/10.1016/j.jconrel.2005.03.031

    Article  Google Scholar 

  116. A.K.F. Dyab, H.N. Al-Haque, Particle-stabilised non-aqueous systems. RSC Adv. 3, 13101–13105 (2013)

    Article  Google Scholar 

  117. M.M. Doeff, J.S. Reed, Li ion conductors based on Laponite/poly (ethylene oxide) composites. Solid State Ionics 113, 109–115 (1998)

    Article  Google Scholar 

  118. J. Bujdák, E. Hackett, E.P. Giannelis, Effect of layer charge on the intercalation of poly (ethylene oxide) in layered silicates: implications on nanocomposite polymer electrolytes. Chem. Mater. 12, 2168–2174 (2000)

    Article  Google Scholar 

  119. K. Shikinaka, K. Aizawa, Y. Murakami et al., Structural and mechanical properties of Laponite–PEG hybrid films. J. Colloid Interface Sci. 369, 470–476 (2012)

    Article  ADS  Google Scholar 

  120. K. Shikinaka, K. Aizawa, K. Shigehara, Strengthening and structural ordering of Laponite-poly (ethylene glycol) hybrid films. Clay Sci. 21, 7–12 (2017)

    Google Scholar 

  121. A. Dundigalla, S. Lin-Gibson, V. Ferreiro et al., Unusual multilayered structures in poly (ethylene oxide)/Laponite nanocomposite films. Macromol. Rapid Commun. 26, 143–149 (2005)

    Article  Google Scholar 

  122. A. Loiseau, J.-F. Tassin, Model nanocomposites based on Laponite and poly (ethylene oxide): preparation and rheology. Macromolecules 39, 9185–9191 (2006)

    Article  ADS  Google Scholar 

  123. K. Shikinaka, K. Aizawa, N. Fujii et al., Flexible, transparent nanocomposite film with a large clay component and ordered structure obtained by a simple solution-casting method. Langmuir 26, 12493–12495 (2010)

    Article  Google Scholar 

  124. E.A. Lysenkov, Y.P. Gomza, V.V. Klepko et al., Influence of mineral fillers on the structure and properties of nanocomposites based on polyethylene glycol. Nanosyst. Nanomater Nanotechnol. (Kiev, Ukr.) 8(3), 677–692 (2010)

    Google Scholar 

  125. M. Kawasumi, N. Hasegawa, A. Usuki, A. Okada, Liquid crystal/clay mineral composites. Appl. Clay Sci. 15, 93–108 (1999)

    Article  Google Scholar 

  126. M. Lavrič, V. Tzitzios, G. Cordoyiannis et al., Blue phase range widening induced by Laponite nanoplatelets in the chiral liquid crystal CE8. Mol. Cryst. Liq. Cryst. 615, 14–18 (2015)

    Article  Google Scholar 

  127. J.S. Van Duijneveldt, S. Klein, E. Leach et al., Large scale structures in liquid crystal/clay colloids. J. Phys.: Condens. Matter 17, 2255 (2005)

    ADS  Google Scholar 

  128. Z. Zhang, J.S. van Duijneveldt, Effect of suspended clay particles on isotropic–nematic phase transition of liquid crystal. Soft Matter 3, 596–604 (2007)

    Article  ADS  Google Scholar 

  129. M. Mousa, N.D. Evans, R.O.C. Oreffo, J.I. Dawson, Clay nanoparticles for regenerative medicine and biomaterial design: a review of clay bioactivity. Biomaterials 159, 204–214 (2018)

    Article  Google Scholar 

  130. A. Jayakumar, A. Surendranath, P.V. Mohanan, 2D materials for next generation healthcare applications. Int. J. Pharm. (2018)

    Google Scholar 

  131. M.A. Haq, Y. Su, D. Wang, Mechanical properties of PNIPAM based hydrogels: a review. Mater. Sci. Eng., C 70, 842–855 (2017)

    Article  Google Scholar 

  132. N. Asadi, E. Alizadeh, R. Salehi et al., Nanocomposite hydrogels for cartilage tissue engineering: a review. Artif. Cells Nanomed. Biotechnol. 46, 465–471 (2018)

    Article  Google Scholar 

  133. K. Rathee, V. Dhull, R. Dhull, S. Singh, Biosensors based on electrochemical lactate detection: a comprehensive review. Biochem. Biophys. Rep. 5, 35–54 (2016)

    Google Scholar 

  134. P. Kanyong, F.D. Krampa, Y. Aniweh, G.A. Awandare, Enzyme-based amperometric galactose biosensors: a review. Microchim. Acta 184, 3663–3671 (2017)

    Article  Google Scholar 

  135. C.S. Pundir, V. Narwal, B. Batra, Determination of lactic acid with special emphasis on biosensing methods: a review. Biosens. Bioelectron. 86, 777–790 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the funding from the National Academy of Sciences of Ukraine, Projects No. 0117U004046 and 43/19-H (NIL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolai Lebovka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lebovka, N., Lisetski, L., Bulavin, L.A. (2019). Organization of Nano-disks of Laponite® in Soft Colloidal Systems. In: Bulavin, L., Xu, L. (eds) Modern Problems of the Physics of Liquid Systems. PLMMP 2018. Springer Proceedings in Physics, vol 223. Springer, Cham. https://doi.org/10.1007/978-3-030-21755-6_6

Download citation

Publish with us

Policies and ethics