Skip to main content

On the Mechanism of the Radiation Influence Upon the Structure and Thermodynamic Properties of Water

  • Conference paper
  • First Online:
Modern Problems of the Physics of Liquid Systems (PLMMP 2018)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 223))

Included in the following conference series:

Abstract

In the current work the results of the study of the \(\alpha \)-particle irradiation influence on water are presented. To quantify the changes in the structure and macroscopic parameters of water when irradiated by the \(\alpha \)-particles with the energies in the range from 0.05 to 0.25 keV p/particle the molecular dynamic simulation is used. To interpret the obtained numerical results the theoretical model based on the fundamental Bogolyubov chain of equations is applied. Comparison of the current results with the existing simulation and experimental data confirms that the changes in the structural and thermodynamic properties of water under the irradiation in the stationary state are due to the distortion of the momentum distribution function of the system. The obtained results suggest that the proposed parameter “effective temperature” that is the analogue of the thermodynamic temperature for the case of the nonequilibrium system in the stationary state allows quantifying the changes in the structure and thermodynamic properties of water under the irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E.C. Montenegro, H. Luna, Braz. J. Phys. 35(4A), 927 (2005)

    Article  ADS  Google Scholar 

  2. M. Kreipl, V. Friedland, H. Paretzke, Radiat. Environ. Biophys. 48, 11 (2009)

    Article  Google Scholar 

  3. M. Qi, G. Wua, Q. Li, Y. Luo, Rad. Phys. Chem. 77, 877–883 (2008). https://doi.org/10.1016/j.radphyschem.2007.12.007

    Article  ADS  Google Scholar 

  4. B.M. Weon, J.S. Lee, J.H. Je, K. Fezzaa, Phys. Rev. E 84, 032601 (2011). https://doi.org/10.1103/PhysRevE.84.032601

  5. E. Zarkadoula, S.L. Daraszewicz, D.M. Duffy, M.A. Seaton, I.T. Todorov, K. Nordlund, M.T. Dove, K. Trachenko, J. Phys. Condens. Matter 25, 125402 (2013). https://doi.org/10.1088/0953-8984/25/12/125402

    Article  ADS  Google Scholar 

  6. W.J. Weber, R.C. Ewing, C.R.A. Catlow, T.D. de la Rubia, L.W. Hobbs, C. Kinoshita, H. Matzke, A.T. Motta, M. Nastasi, E.K.H. Salje, E.R. Vance, S.J. Zinkle, JMR 13, 1434 (1998). https://doi.org/10.1557/JMR.1998.0205

    Article  Google Scholar 

  7. E.M. Fielden, P. O’Neill (eds.), The Early Effects of Radiation on DNA, NATO ASI Series H: Cell Biology, vol. 54 (Springer, 1991). https://doi.org/10.1007/978-3-642-75148-6

    Google Scholar 

  8. K. Trachenko, J.M. Pruneda, E. Artacho, M.T. Dove, Phys. Rev. B 71, 184104 (2005). https://doi.org/10.1103/PhysRevB.71.184104

    Article  ADS  Google Scholar 

  9. K. Nordlund, M. Ghaly, R.S. Averback, M. Caturla, T. Diaz de la Rubia, J. Tarus, Phys. Rev. B 57, 7556 (1998). https://doi.org/10.1103/PhysRevB.57.7556

    Article  ADS  Google Scholar 

  10. L. Malerba, M. Marinica, N. Anento, C. Bjorkas, H. Nguyen, C. Domain, F. Djurabekova, P. Olsson, K. Nordlund, A. Serra, D. Terentyev, F. Willaime, C. Becquart, J. Nucl. Mater. 406, 19 (2010). https://doi.org/10.1016/j.jnucmat.2010.05.017

    Article  ADS  Google Scholar 

  11. B.M. Weon, J.H. Je, Y. Hwu, G. Margaritondo, Phys. Rev. Lett. 100, 217403 (2008). https://doi.org/10.1103/PhysRevLett.100.217403

  12. L. Yuan, J. Peng, L. Xu, M. Zhai, J. Li, G. Wei, J. Phys. Chem. B 113, 8948–8952 (2009). https://doi.org/10.1021/jp9016079

    Article  Google Scholar 

  13. K.D. Kok (ed.), Nuclear Engineering Handbook (Nuclear Engineering Handbook, 2016)

    Google Scholar 

  14. I.Z. Fisher, Statistical Theory of Liquids (University of Chicago Press, 1961)

    Google Scholar 

  15. A.J. Lomax, T. Boehringer, A. Coray, E. Egger, G. Goitein, M. Grossmann, P. Juelke, S. Lin, E. Pedroni, B. Rohrer, W. Roser, B. Rossi, B. Siegenthaler, O. Stadelmann, H. Stauble, C. Vetter, L. Wisser, Med. Phys. 28(3), 317 (2001). https://doi.org/10.1118/1.1350587

    Article  ADS  Google Scholar 

  16. O. Jäkel, C.P. Karger, J. Debus, Med. Phys. 35(12), 5653 (2008)

    Article  Google Scholar 

  17. T. Abe, Y. Kazama, T. Hirano, Nucl. Phys. News 25(4), 30 (2015). https://doi.org/10.1080/10619127.2015.1104130

    Article  Google Scholar 

  18. H. Ichida, R. Morita, Y. Shirakawa, Y. Hayashi, T. Abe, Plant J. (2019). https://doi.org/10.1111/tpj.14213

    Article  Google Scholar 

  19. E. Alizadeh, A.G. Sanz, G. Garcia, L. Sanche, Phys. Chem. Lett. 4(5), 820 (2013). https://doi.org/10.1021/jz4000998

    Article  Google Scholar 

  20. M. Spotheim-Maurizot, M. Davidkova, J. Phys. Conf. Ser. 261, 012010 (2011). https://doi.org/10.1088/1742-6596/261/1/012010

    Article  Google Scholar 

  21. V.S. Urusov, A.E. Grechanovsky, N.N. Eremin, Glass Phys. Chem. 38, 55 (2012)

    Article  Google Scholar 

  22. K. Trachenko, E. Zarkadoula, I. Todorov, M. Dove, D. Dunstan, K. Nordlund, Nucl. Instr. Meth. Phys. Res. B 227, 6 (2012). https://doi.org/10.1016/j.nimb.2011.12.058

    Article  ADS  Google Scholar 

  23. H.A. Dewhurst, A.H. Samuel, J.L. Magee, Radiat. Res. 1(1), 62 (1954). https://doi.org/10.2307/3570180

    Article  ADS  Google Scholar 

  24. A.O. Allen, The Radiation Chemistry of Water and Aqueous Solutions (Princeton, NJ, Van Nostrand, 1961)

    Google Scholar 

  25. M.G. Evans, N.S. Hush, N. Uri, Q. Rev, Chem. Soc. 6, 186 (1952). https://doi.org/10.1039/QR9520600186

    Article  Google Scholar 

  26. A. Mozumder, Fundamentals of Radiation Chemistry (Academic Press, 1999)

    Google Scholar 

  27. A.H. Samuel, J.L. Magee, J. Chem. Phys. 21, 1080 (1953)

    Article  ADS  Google Scholar 

  28. M. Domae, Y. Katsumura, K. Ishigure, V.M. Byakov, Rad. Phys. Chem. 48(4), 487 (1996). https://doi.org/10.1016/0969-806X(96)00060-6, http://www.sciencedirect.com/science/article/pii/0969806X96000606

    Article  ADS  Google Scholar 

  29. A. Guleria, A.K. Singh, S. Adhikari, Phys. Chem. Chem. Phys. 17, 11053 (2015). https://doi.org/10.1039/C4CP06070A

    Article  Google Scholar 

  30. B.M. Weon, J.H. Je, Appl. Phys. Lett. 93, 244105 (2008). https://doi.org/10.1063/1.3050528

    Article  ADS  Google Scholar 

  31. E. Lemmon, M. Huber, M. McLinden, REFPROP: Reference Fluid Thermodynamic and Transport Properties. Version 8.0. NIST standard reference database (NIST, Gaithersburg, 2007)

    Google Scholar 

  32. R.H. Fowler, Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 159(897), 229 (1937). https://doi.org/10.1098/rspa.1937.0069

  33. J.S. Rowlinson, B. Widom, Molecular Theory of Capillarity (Clarendon, Oxford, 1982)

    Google Scholar 

  34. H. Christie, M. Robinson, D. Roach, D. Ross, I. Suarez-Martinez, N. Marks, Carbon 81, 105–114 (2015). https://doi.org/10.1016/j.carbon.2014.09.031

    Article  Google Scholar 

  35. G.R. Lumpkin, K.L. Smith, M.G. Blackford, B.S. Thomas, K.R. Whittle, N.A. Marks, N.J. Zaluzec, Phys. Rev. B 77, 214201 (2008). https://doi.org/10.1103/PhysRevB.77.214201

  36. K. Trachenko, M.T. Dove, E. Artacho, I.T. Todorov, W. Smith, Phys. Rev. B 73, 174207 (2006). https://doi.org/10.1103/PhysRevB.73.174207, http://journals.aps.org/prb/abstract/10.1103/PhysRevB.73.174207

  37. C. Valeriani, P.J. Camp, J.W. Zwanikken, R. van Roij, M. Dijkstra, Soft MatterD 6(12), 2793 (2010). https://doi.org/10.1039/C001577F

    Article  ADS  Google Scholar 

  38. L. Xu, S.V. Buldyrev, H.E. Stanley, G. Franzese, Phys. Rev. Lett. 109, 095702 (2012). https://doi.org/10.1103/PhysRevLett.109.095702

  39. S. Toxvaerd, Phys. Rev. E 58, 704 (1998). https://doi.org/10.1103/PhysRevE.58.704

    Article  ADS  Google Scholar 

  40. G.W. Robinson, S.B. Zhu, S. Singh, M.W. Evans, Water in Biology, Chemistry and Physics: Experimental Overviews and Computational Methodologies, World Scientific Series in Contemporary Chemical Physics, vol. 9 (World Scientific, Singapore, 1996)

    Book  Google Scholar 

  41. J.O. Sindt, A.J. Alexander, P.J. Camp, J. Chem. Phys. 147(21), 214506 (2017). https://doi.org/10.1063/1.5002002

    Article  ADS  Google Scholar 

  42. L.A. Bulavin, K.V. Cherevko, D.A. Gavryushenko, V.M. Sysoev, T.S. Vlasenko, Phys. Rev. E 93, 032133 (2016). https://doi.org/10.1103/PhysRevE.93.032133

    Article  ADS  Google Scholar 

  43. N. Bogolyubov, Problems of dynamical theory in statistical physics. Studies in Statistical Mechanics, vol. 1 (North-Holland, 1962), p. 5

    Google Scholar 

  44. S. Uehara, H. Nikjoo, J. Phys. Chem. B 106, 11051 (2002). https://doi.org/10.1021/jp014004h

    Article  Google Scholar 

  45. J. Zielkiewicz, J. Chem. Phys. 123, 104501 (2005). https://doi.org/10.1063/1.2018637

    Article  ADS  Google Scholar 

  46. B. Guillot, J. Mol. Liq. 101, 219 (2002). https://doi.org/10.1016/S0167-7322(02)00094-6

    Article  Google Scholar 

  47. Y. Wu, H.L. Tepper, G.A. Voth, J. Chem. Phys. 124, 024503 (2006). https://doi.org/10.1063/1.2136877

    Article  ADS  Google Scholar 

  48. K. Trachenko, M.T. Dove, E.K.H. Salje, Phys. Rev. B 65, 180102(R) (2002). https://doi.org/10.1103/PhysRevB.65.180102

    Article  ADS  Google Scholar 

  49. I. Todorov, W. Smith, K. Trachenko, M. Dove, J. Mater. Chem. 16, 1911 (2006). https://doi.org/10.1039/B517931A

    Article  Google Scholar 

  50. H.A. Lorentz, Ann. Phys. 248, 127–136 (1881). https://doi.org/10.1002/andp.18812480110

    Article  Google Scholar 

  51. D. Berthelot, C.R. Acad. Sci. 126, 1703–1855 (1898)

    Google Scholar 

  52. A.P. Lyubartsev, A. Laaksonen, J. Phys. Chem. 100, 16410 (1996). https://doi.org/10.1021/jp961317h

    Article  Google Scholar 

  53. G. Guevara-Carrion, J. Vrabec, H. Hasse, J. Chem. Phys. 134, 074508 (2011). https://doi.org/10.1063/1.3515262

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kostyantyn Cherevko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cherevko, K., Gavryushenko, D., Sysoev, V., Vlasenko, T., Bulavin, L.A. (2019). On the Mechanism of the Radiation Influence Upon the Structure and Thermodynamic Properties of Water. In: Bulavin, L., Xu, L. (eds) Modern Problems of the Physics of Liquid Systems. PLMMP 2018. Springer Proceedings in Physics, vol 223. Springer, Cham. https://doi.org/10.1007/978-3-030-21755-6_13

Download citation

Publish with us

Policies and ethics