Skip to main content

Physical Principles of Laser Ablation

  • Chapter
  • First Online:
Image-guided Laser Ablation

Abstract

Laser ablation (LA) is a percutaneous tumor ablation technique that utilizes laser light delivered interstitially into the biological tissue to provoke a local hyperthermia according to a planned action. The laser light is coherent and monochromatic, it can be very collimated and focused and delivered though optical fibers with little loss of energy from the source to the target. The nature of the effects of the interaction of the laser light with the tissues depends on many factors, among which the most relevant are the laser wavelength, laser power, exposure time, pulse duration and repetition frequency in case of pulsed emission, the beam characteristics, the optical characteristics of the applicator, and physical properties of the tissue. Inside the biological tissue, light can be reflected, transmitted, scattered and absorbed. Only absorbed energy can produce biological effects while the other above-mentioned phenomena could affect the shape, the extension and the position of the warmed up volume. During the ablation process, coagulation becomes appreciable in the range of temperatures between 54 and 60 °C, depending on the heating rate. Above 60 °C, both the denaturation of larger structural proteins and cellular components accelerate, leading to widespread coagulation and rapid cell death in a duration of less than one second. Currently, most LA procedures use Nd:YAG (λ = 1064 nm) or semiconductor diode lasers (λ = 800–980 nm) operating in the range of 2–40 W. Laser fibers can be multiple and placed into the tissue and can be activated simultaneously to rapidly treat a large volume of tissue if the laser equipment has several laser sources inside. The cooled catheters are now a new technology, a progress for ablative techniques. These cooled systems allow avoiding a too rapid dehydration, reducing carbonization and then sublimation of the tissue which is a limiting factor in the efficiency of the ablation process in terms of the transfer of energy to the tissue itself. The most used guidance systems for positioning the applicator in the portion of tissue to be ablated is ultrasonic imaging; the least used is the systems using CT imaging, while the systems using Magnetic Resonance imaging are very interesting, but also they are very expensive, cumbersome and not so comfortable for the patient. They, however, allow to control in real-time of all the ablation phases from planning to final assessment of the ablative process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The Pennes equation was developed around 1948 [11] and, in the years to follow, it has been deeply analyzed and reinterpreted also at the mathematical level. Pennes conducted a study on a mathematical model based on the energy balance of an arbitrary volume of tissue. In this model the energy transfer is due to the phenomenon of conduction, metabolism and movement of blood or convection. In more detail, it takes into account many parameters including the thermal conductivity of the tissue—the capacity of the tissue to conduct heat, the rate of perfusion and the specific heat capacity of the blood, the specific heat and the mass density of the tissue, the density of the absorbed power—the external heat input to the tissue or the energy released from the outside, and again the heat generated by tissue metabolism (generally negligible compared to other heat inputs), the tissue and arterial blood temperatures over time—the kinetics of heat transfer caused, respectively, by thermal conduction (fats and proteins) and convection (blood flow). Alternative theoretical models have been studied to describe the characteristics of heat transfer of tumors more accurately, considering the “thermally significant” blood vessels, but the bioheat transfer (BHTE) serves as a good starting point. The balance equations are linear and, therefore, the tissue studies can be solved by various methods. For this last reason, the Pennes equation is universally recognized as the equation of human warmth (“bioheat equation”).

References

  1. Townes CH. Optical masers and their possible applications to biology. Biophys J. 1962;2(2 Pt 2):325–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Maiman TH. Biomedical lasers evolve toward clinical applications. Hosp Manage. 1966;101(4):39–41.

    PubMed  CAS  Google Scholar 

  3. Solon LR, Aronson R, Gould G. Physiological implications of laser beams. Science. 1961;134(3489):1506–8.

    Article  PubMed  CAS  Google Scholar 

  4. Bown SG. Phototherapy in tumors. World J Surg. 1983;7(6):700–9.

    Article  PubMed  CAS  Google Scholar 

  5. Muller GJ, Roggan A. Laser-induced interstitial thermotherapy. Bellingham, WA: SPIE-The International Society for Optical Engineering; 1995.

    Google Scholar 

  6. Jacques SL. Laser-tissue interactions. Photochemical, photothermal, and photomechanical. Surg Clin North Am. 1992;72(3):531–58.

    Article  PubMed  CAS  Google Scholar 

  7. Jacques SL. Optical properties of biological tissues: a review. Phys Med Biol. 2013;58(11):R37–61.

    Article  PubMed  Google Scholar 

  8. Schena E, Saccomandi P, Fong Y. Laser ablation for cancer: past, present and future. J Funct Biomater. 2017;8(2):E19.

    Article  PubMed  Google Scholar 

  9. Nikfarjam M, Christophi C. Interstitial laser thermotherapy for liver tumours. Br J Surg. 2003;90(9):1033–47.

    Article  PubMed  CAS  Google Scholar 

  10. Saccomandi P, Schena E, Caponero MA, Di Matteo FM, Martino M, Pandolfi M, et al. Theoretical analysis and experimental evaluation of laser-induced interstitial thermotherapy in ex vivo porcine pancreas. IEEE Trans Biomed Eng. 2012;59(10):2958–64.

    Article  PubMed  Google Scholar 

  11. Pennes HH. Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol. 1948;1(2):93–122.

    Article  PubMed  CAS  Google Scholar 

  12. Stafford RJ, Shetty A, Elliott AM, Klumpp SA, McNichols RJ, Gowda A, et al. Magnetic resonance guided, focal laser induced interstitial thermal therapy in a canine prostate model. J Urol. 2010;184(4):1514–20.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dewhirst MW, Viglianti BL, Lora-Michiels M, Hanson M, Hoopes PJ. Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia. Int J Hyperth. 2003;19(3):267–94.

    Article  CAS  Google Scholar 

  14. Dewey WC. Arrhenius relationships from the molecule and cell to the clinic. Int J Hyperth. 2009;25(1):3–20.

    Article  CAS  Google Scholar 

  15. Stafford RJ, Fuentes D, Elliott AA, Weinberg JS, Ahrar K. Laser-induced thermal therapy for tumor ablation. Crit Rev Biomed Eng. 2010;38(1):79–100.

    Article  PubMed  Google Scholar 

  16. Schwarzmaier H-J, Goldbach T, Ulrich F, Schober R, Kahn T, Kaufmann R, et al. Improved laser applicators for interstitial thermotherapy of brain structures. In: Cerullo LJ, Heiferman KS, Liu H, Podbielska H, Wist AO, Zamorano LJ, editors. Proceedings of the clinical applications of modern imaging technology II, Los Angeles, CA, USA, 23 Jan 1994. Orlando, FL: International Society for Optics and Photonics; 1994. p. 4–12.

    Google Scholar 

  17. Amin Z, Donald JJ, Masters A, Kant R, Steger AC, Bown SG, et al. Hepatic metastases: interstitial laser photocoagulation with real-time US monitoring and dynamic CT evaluation of treatment. Radiology. 1993;187(2):339–47.

    Article  PubMed  CAS  Google Scholar 

  18. Schroder T, Castren-Persons M, Lehtinen A, Taavitsainen M. Percutaneous interstitial laser hyperthermia in clinical use. Ann Chir Gynaecol. 1994;83(4):286–90.

    PubMed  CAS  Google Scholar 

  19. Matthewson K, Coleridge-Smith P, O’Sullivan JP, Northfield TC, Bown SG. Biological effects of intrahepatic neodymium:yttrium-aluminum-garnet laser photocoagulation in rats. Gastroenterology. 1987;93(3):550–7.

    Article  PubMed  CAS  Google Scholar 

  20. Matsumoto R, Selig AM, Colucci VM, Jolesz FA. Interstitial Nd:YAG laser ablation in normal rabbit liver: trial to maximize the size of laser-induced lesions. Lasers Surg Med. 1992;12(6):650–8.

    Article  PubMed  CAS  Google Scholar 

  21. Pacella CM, Bizzarri G, Ferrari FS, Anelli V, Valle D, Bianchini A, et al. [Interstitial photocoagulation with laser in the treatment of liver metastasis]. Radiol Med. 1996;92(4):438–47.

    Google Scholar 

  22. Pacella CM, Bizzarri G, Francica G, Bianchini A, De Nuntis S, Pacella S, et al. Percutaneous laser ablation in the treatment of hepatocellular carcinoma with small tumors: analysis of factors affecting the achievement of tumor necrosis. J Vasc Interv Radiol. 2005;16(11):1447–57.

    Article  PubMed  Google Scholar 

  23. Pacella CM, Francica G, Di Lascio FM, Arienti V, Antico E, Caspani B, et al. Long-term outcome of cirrhotic patients with early hepatocellular carcinoma treated with ultrasound-guided percutaneous laser ablation: a retrospective analysis. J Clin Oncol. 2009;27(16):2615–21.

    Article  PubMed  Google Scholar 

  24. Huang GT, Wang TH, Sheu JC, Daikuzono N, Sung JL, Wu MZ, et al. Low-power laserthermia for the treatment of small hepatocellular carcinoma. Eur J Cancer. 1991;27(12):1622–7.

    Article  PubMed  CAS  Google Scholar 

  25. Nolsoe CP, Torp-Pedersen S, Burcharth F, Horn T, Pedersen S, Christensen NE, et al. Interstitial hyperthermia of colorectal liver metastases with a US-guided Nd-YAG laser with a diffuser tip: a pilot clinical study. Radiology. 1993;187(2):333–7.

    Article  PubMed  CAS  Google Scholar 

  26. Vogl TJ, Mack MG, Straub R, Roggan A, Felix R. Magnetic resonance imaging-guided abdominal interventional radiology: laser-induced thermotherapy of liver metastases. Endoscopy. 1997;29(6):577–83.

    Article  PubMed  CAS  Google Scholar 

  27. van Hillegersberg R, van Staveren HJ, Kort WJ, Zondervan PE, Terpstra OT. Interstitial Nd:YAG laser coagulation with a cylindrical diffusing fiber tip in experimental liver metastases. Lasers Surg Med. 1994;14(2):124–38.

    Article  PubMed  Google Scholar 

  28. Moller PH, Lindberg L, Henriksson PH, Persson BR, Tranberg KG. Temperature control and light penetration in a feedback interstitial laser thermotherapy system. Int J Hyperth. 1996;12(1):49–63.

    Article  CAS  Google Scholar 

  29. Heisterkamp J, van Hillegersberg R, Sinofsky E, Ijzermans JN. Heat-resistant cylindrical diffuser for interstitial laser coagulation: comparison with the bare-tip fiber in a porcine liver model. Lasers Surg Med. 1997;20(3):304–9.

    Article  PubMed  CAS  Google Scholar 

  30. Sturesson C. Interstitial laser-induced thermotherapy: influence of carbonization on lesion size. Lasers Surg Med. 1998;22(1):51–7.

    Article  PubMed  CAS  Google Scholar 

  31. Mensel B, Weigel C, Hosten N. Laser-induced thermotherapy. Recent Results Cancer Res. 2006;167:69–75.

    Article  PubMed  Google Scholar 

  32. Möller PH, Lindberg L, Henriksson PH, Persson BRR, Tranberg K-G. Interstitial laser thermotherapy: comparison between bare fibre and sapphire probe. Lasers Med Sci. 1995;10:193–200.

    Article  Google Scholar 

  33. Heisterkamp J, van Hillegersberg R, Ijzermans JN. Critical temperature and heating time for coagulation damage: implications for interstitial laser coagulation (ILC) of tumors. Lasers Surg Med. 1999;25(3):257–62.

    Article  PubMed  CAS  Google Scholar 

  34. Muralidharan V, Christophi C. Interstitial laser thermotherapy in the treatment of colorectal liver metastases. J Surg Oncol. 2001;76(1):73–81.

    Article  PubMed  CAS  Google Scholar 

  35. Steger AC, Lees WR, Shorvon P, Walmsley K, Bown SG. Multiple-fibre low-power interstitial laser hyperthermia: studies in the normal liver. Br J Surg. 1992;79(2):139–45.

    Article  PubMed  CAS  Google Scholar 

  36. Germer CT, Albrecht D, Roggan A, Buhr HJ. Technology for in situ ablation by laparoscopic and image-guided interstitial laser hyperthermia. Semin Laparosc Surg. 1998;5(3):195–203.

    PubMed  CAS  Google Scholar 

  37. Germer CT, Albrecht D, Isbert C, Ritz J, Roggan A, Buhr HJ. Diffusing fibre tip for the minimally invasive treatment of liver tumours by interstitial laser coagulation (ILC): an experimental ex vivo study. Lasers Med Sci. 1999;14(1):32–9.

    Article  PubMed  CAS  Google Scholar 

  38. Heisterkamp J, Van Hillegersberg R, Sinofsky EL, Ijzermans JNM. Interstitial laser photocoagulation with four cylindrical diffusing fibre tips: importance of mutual fibre distance. Lasers Med Sci. 1999;14:216–20.

    Article  Google Scholar 

  39. Heisterkamp J, van Hillegersberg R, Ijzermans JN. Interstitial laser coagulation for hepatic tumours. Br J Surg. 1999;86(3):293–304.

    Article  PubMed  CAS  Google Scholar 

  40. Saccomandi P, Schena E, Giurazza F, Del Vescovo R, Caponero MA, Mortato L, et al. Temperature monitoring and lesion volume estimation during double-applicator laser-induced thermotherapy in ex vivo swine pancreas: a preliminary study. Lasers Med Sci. 2014;29(2):607–14.

    Article  PubMed  Google Scholar 

  41. Vogl TJ, Muller PK, Hammerstingl R, Weinhold N, Mack MG, Philipp C, et al. Malignant liver tumors treated with MR imaging-guided laser-induced thermotherapy: technique and prospective results. Radiology. 1995;196(1):257–65.

    Article  PubMed  CAS  Google Scholar 

  42. Vogl TJ, Mack MG, Roggan A, Straub R, Eichler KC, Muller PK, et al. Internally cooled power laser for MR-guided interstitial laser-induced thermotherapy of liver lesions: initial clinical results. Radiology. 1998;209(2):381–5.

    Article  PubMed  CAS  Google Scholar 

  43. Vogl TJ, Eichler K, Straub R, Engelmann K, Zangos S, Woitaschek D, et al. Laser-induced thermotherapy of malignant liver tumors: general principals, equipment(s), procedure(s)—side effects, complications and results. Eur J Ultrasound. 2001;13(2):117–27.

    Article  PubMed  CAS  Google Scholar 

  44. de Jode MG, Lamb GM, Thomas HC, Taylor-Robinson SD, Gedroyc WM. MRI guidance of infra-red laser liver tumour ablations, utilising an open MRI configuration system: technique and early progress. J Hepatol. 1999;31(2):347–53.

    Article  PubMed  Google Scholar 

  45. Rieke V, Butts Pauly K. MR thermometry. J Magn Reson Imaging. 2008;27(2):376–90.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Diederich CJ, Nau WH, Kinsey A, Ross T, Wootton J, Juang T, et al. Catheter-based ultrasound devices and MR thermal monitoring for conformal prostate thermal therapy. Conf Proc IEEE Eng Med Biol Soc. 2008;2008:3664–8.

    Google Scholar 

  47. Ahrar K, Gowda A, Javadi S, Borne A, Fox M, McNichols R, et al. Preclinical assessment of a 980-nm diode laser ablation system in a large animal tumor model. J Vasc Interv Radiol. 2010;21(4):555–61.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pacella, C.M., Breschi, L., Bottacci, D., Masotti, L. (2020). Physical Principles of Laser Ablation. In: Pacella, C., Jiang, T., Mauri, G. (eds) Image-guided Laser Ablation. Springer, Cham. https://doi.org/10.1007/978-3-030-21748-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21748-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21747-1

  • Online ISBN: 978-3-030-21748-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics