Skip to main content

Condorcet Optimal Clustering with Delaunay Triangulation: Climate Zones and World Happiness Insights

  • Conference paper
  • First Online:
Social, Cultural, and Behavioral Modeling (SBP-BRiMS 2019)

Abstract

Condorcet clustering methods have the attractive features of producing clusterings which place similar points in the same cluster and dissimilar points in different clusters as well as not requiring a priori specification of the number of clusters. They have the disadvantages of being combinatorially hard and the method produces only convex clusters. We propose a novel modification to this method, which improves it significantly on both accounts and works particularly well when applied to social network type data sets. Specifically, we reduce the domain of the clustering to be over a Delaunay triangulation, whose size scales as \(O(n^{\lfloor m/2 \rfloor })\) where n is the number of records and m is the number of attributes used for the clustering. The triangulation also limits focus to local structure, which allows for non-convex clusterings. We demonstrate its use in comparison to other well-known heuristic methods using several constructed datasets, then use it to cluster real-world datasets.

This research was completed in partial fulfillment of the United States Military Academy’s Network Science Minor program and sponsored by the West Point Network Science Center.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ah-Pine, J., Marcotorchino, J.F.: Overview of the relational analysis approach in data-mining and multi-criteria decision making. In: Web Intelligence and Intelligent Agents. InTech (2010)

    Google Scholar 

  2. Atamtürk, A., Nemhauser, G.L., Savelsbergh, M.W.: A combined lagrangian, linear programming, and implication heuristic for large-scale set partitioning problems. J. Heuristics 1(2), 247–259 (1996)

    Article  Google Scholar 

  3. Bertsimas, D., Allison, K., Pulleyblank, W.R.: The Analytics Edge. Dynamic Ideas LLC (2016)

    Google Scholar 

  4. Caliński, T., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat.-Theory Methods 3(1), 1–27 (1974)

    Article  MathSciNet  Google Scholar 

  5. Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD, vol. 96, pp. 226–231 (1996)

    Google Scholar 

  6. Franti, P., Virmajoki, O., Hautamaki, V.: Fast agglomerative clustering using a k-nearest neighbor graph. IEEE Trans. Pattern Anal. Mach. Intell. 28(11), 1875–1881 (2006)

    Article  Google Scholar 

  7. Friedman, J., Hastie, T., Tibshirani, R.: The Elements of Statistical Learning. Springer Series in Statistics, vol. 1. Springer, New York (2001). https://doi.org/10.1007/978-0-387-21606-5

    Book  MATH  Google Scholar 

  8. Grötschel, M., Wakabayashi, Y.: A cutting plane algorithm for a clustering problem. Math. Program. 45(1–3), 59–96 (1989)

    Article  MathSciNet  Google Scholar 

  9. Grötschel, M., Wakabayashi, Y.: Facets of the clique partitioning polytope. Math. Program. 47(1–3), 367–387 (1990)

    Article  MathSciNet  Google Scholar 

  10. Helliwell, J.F., L.R., Sachs, J.: World happiness report 2015 (2015)

    Google Scholar 

  11. Jain, A.K.: Data clustering: 50 years beyond k-means. Pattern Recogn. Lett. 31(8), 651–666 (2010)

    Article  Google Scholar 

  12. Lee, D., Schachter, B.J.: Two algorithms for constructing a Delaunay triangulation. Int. J. Comput. Inf. Sci. 9(3), 219–242 (1980)

    Article  MathSciNet  Google Scholar 

  13. Marcotorchino, F., Michaud, P.: Agregation de similarites en classification automatique. Rev. Stat. Appl. 30(2), 21–44 (1982)

    MathSciNet  MATH  Google Scholar 

  14. McInnes, L., Healy, J., Astels, S.: HDBSCAN: hierarchical density based clustering. J. Open Source Softw. 2(11), 205 (2017)

    Article  Google Scholar 

  15. Mehrotra, A., Trick, M.A.: Cliques and clustering: a combinatorial approach. Oper. Res. Lett. 22(1), 1–12 (1998)

    Article  MathSciNet  Google Scholar 

  16. Meila, M., Shi, J.: Learning segmentation by random walks. In: Advances in Neural Information Processing Systems, pp. 873–879 (2001)

    Google Scholar 

  17. Miyauchi, A., Sonobe, T., Sukegawa, N.: Exact clustering via integer programming and maximum satisfiability. In: AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  18. Miyauchi, A., Sukegawa, N.: Redundant constraints in the standard formulation for the clique partitioning problem. Optim. Lett. 9(1), 199–207 (2015)

    Article  MathSciNet  Google Scholar 

  19. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and an algorithm. In: Advances in Neural Information Processing Systems, pp. 849–856 (2002)

    Google Scholar 

  20. NOAA: Comparative climatic data. National Centers for Environmental Information (2015). https://www.ncdc.noaa.gov/ghcn/comparative-climatic-data

  21. Oosten, M., Rutten, J.H., Spieksma, F.C.: The clique partitioning problem: facets and patching facets. Netw. Int. J. 38(4), 209–226 (2001)

    MathSciNet  MATH  Google Scholar 

  22. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

    Article  Google Scholar 

  23. Sukegawa, N., Yamamoto, Y., Zhang, L.: Lagrangian relaxation and pegging test for the clique partitioning problem. Adv. Data Anal. Classif. 7(4), 363–391 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Scott Lynch or Ryan Miller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 This is a U.S. government work and not under copyright protection in the United States; foreign copyright protection may apply

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bassett, M. et al. (2019). Condorcet Optimal Clustering with Delaunay Triangulation: Climate Zones and World Happiness Insights. In: Thomson, R., Bisgin, H., Dancy, C., Hyder, A. (eds) Social, Cultural, and Behavioral Modeling. SBP-BRiMS 2019. Lecture Notes in Computer Science(), vol 11549. Springer, Cham. https://doi.org/10.1007/978-3-030-21741-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21741-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21740-2

  • Online ISBN: 978-3-030-21741-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics