Skip to main content

Synthesizing Machine-Learning Datasets from Parameterizable Agents Using Constrained Combinatorial Search

  • Conference paper
  • First Online:
Social, Cultural, and Behavioral Modeling (SBP-BRiMS 2019)

Abstract

The tedious, often hand-modeled, activity of designing and implementing simulation scenarios can benefit from modern-day data-driven methods, i.e., machine-learning (ML). We envision a toolchain that exploits information obtained during live operations, such as the observed maneuvers, techniques, and procedures of all interacting players in live operational settings, that serves as input into an ML-based scenario authoring process. We present a mechanism, called the Parameter Diversifier (PD), that takes a base scenario structure and synthesizes the comprehensive datasets needed for the supervised machine-learning of a scenario authoring model. The design of the PD explores and exploits low-level agent state search space as it relates to it high-level implications at the scenario level. This work demonstrates an explicit sampling of the scenario parameter search space to build an implicit model for use in simulation scenario generation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Erol, K., Hendler, J.N., Nau, D.S.: HTN planning: complexity and expressivity. In: 12th National Conference on Artificial Intelligence (1994)

    Google Scholar 

  2. Fernandez, A., Garcia, S., Hernandez, F., Chawla, N.V.: SMOTE for learning from imbalanced data: progress and challenges, marking the 15-year anniversary. J. Artif. Intell. Res. 61, 863–905 (2018)

    Article  MathSciNet  Google Scholar 

  3. Folsom-Kovarik, J.T., Woods, A., Wray, R.E.: Designing an authorable scenario representation for instructor control over computationally tailored narrative in training. In: Proceedings of the 29th International FLAIRS Conference. AAAI Press, Key Largo (2016)

    Google Scholar 

  4. Graffeo, C., Benoit, T., Wray, R.E., Folsom-Kovarik, J.T.: Creating a scenario design workflow for dynamically tailored training in socio-cultural perception. In: Proceedings of the 2015 Cross-Cultural Decision Making Conference. Springer, Las Vegas (2015)

    Article  Google Scholar 

  5. Haley, J., Hung, V., Bridgman, R., Timpko, N., Wray, R.E.: Low level entity state sequence mapping to high level behavior via a deep LSTM model. In: 20th International Conference on Artificial Intelligence, Las Vegas (2018)

    Google Scholar 

  6. Jennings-Teats, M., Smith, G., Wardrip-Fruin, N.: Polymorth: a model for dynamic level generation. In: AAAI Conference of Artificial Intelligence and Interactive Digital Entertainment (2010)

    Google Scholar 

  7. Juul, J.: Variation over time: the transformation of space in single-screen action games. In: von Borries, F., Walz, S.P., Brinkmann, U., Böttger, M. (eds.) Space Time Play. Birkhäuser, Basel (2007)

    Google Scholar 

  8. Mayer, N., et al.: What makes good synthetic training data for learning disparity and optical flow estimation? Int. J. Comput. Vis. 126(9), 942–960 (2018)

    Article  Google Scholar 

  9. Shrivastava, A., Pfister, T., Tuzel, O., Susskind, J., Wang, W., Webb, R.: Learning from simulated and unsupervised images through adversarial training. In: IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  10. Sorenson, N., Pasquier, P.: Towards a generic framework for automated video game level creation. In: Di Chio, C., et al. (eds.) EvoApplications 2010. LNCS, vol. 6024, pp. 131–140. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12239-2_14

    Chapter  Google Scholar 

  11. Summerville, A., et al.: Procedural content generation via machine learning (PCGML). IEEE Trans. Games 10(3), 257–270 (2018)

    Article  Google Scholar 

  12. Tomizawa, H.: Automated SGen In A Simulation. Master’s thesis, University of Central Florida (2006)

    Google Scholar 

  13. Wallace, S.: Behavior bounding: an efficient method for high-level behavior comparison. J. Artif. Intell. Res. 34, 165–208 (2009)

    Article  Google Scholar 

  14. Wray, R.E., Bachelor, B., Jones, R.M., Newton, C.: Bracketing human performance to support automation for workload reduction: a case study. In: Schmorrow, D.D., Fidopiastis, C.M. (eds.) AC 2015. LNCS (LNAI), vol. 9183, pp. 153–163. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20816-9_16

    Chapter  Google Scholar 

  15. Wray, R.E., Priest, H., Walwanis, M.A., Kaste, K.: Requirements for future SAFs: beyond tactical realism. In: Interservice/Industry Training, Simulation, and Education Conference, Orlando (2015)

    Google Scholar 

  16. Zook, A., Lee-Urban, S., Riedl, M.O., Holden, H.K., Sottilare, R.A., Brawner, K.W.: Automated SGen: toward tailored and optimized military training in virtual environments. In: International Conference on the Foundations of Digital Games, pp. 164–171 (2012)

    Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Heather Priest and Mr. Samuel Parmenter for their contributions to our approach. The opinions expressed here are not necessarily those of the Department of Defense or the sponsor of this effort: Naval Air Warfare Center Training Systems Division. This work was funded under contracts N68335-17-C-0574.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Hung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hung, V., Haley, J., Bridgman, R., Timpko, N., Wray, R. (2019). Synthesizing Machine-Learning Datasets from Parameterizable Agents Using Constrained Combinatorial Search. In: Thomson, R., Bisgin, H., Dancy, C., Hyder, A. (eds) Social, Cultural, and Behavioral Modeling. SBP-BRiMS 2019. Lecture Notes in Computer Science(), vol 11549. Springer, Cham. https://doi.org/10.1007/978-3-030-21741-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21741-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21740-2

  • Online ISBN: 978-3-030-21741-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics