Skip to main content

Metabolomics Biomarkers for Precision Psychiatry

  • Chapter
  • First Online:
The Role of Bioactive Lipids in Cancer, Inflammation and Related Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1161))

Abstract

The treatment of psychiatric disorders remains a significant challenge in part due to imprecise diagnostic criteria and incomplete understanding of the molecular pathology involved. Current diagnostic and pharmacological treatment guidelines use a uniform approach to address each disorder even though psychiatric clinical presentation and prognosis within a disorder are known to be heterogeneous. Limited therapeutic success highlights the need for a precision medicine approach in psychiatry, termed precision psychiatry. To practice precision psychiatry, it is essential to research and develop multiple omics-based biomarkers that consider environmental factors and careful phenotype determination. Metabolomics, which lies at the endpoint of the “omics cascade,” allows for detection of alterations in systems-level metabolites within biological pathways, thereby providing insights into the mechanisms that underlie various physiological conditions and pathologies. The eicosanoids, a family of metabolites derived from oxygenated polyunsaturated fatty acids, play a key role in inflammatory mechanisms and have been implicated in psychiatric disorders such as anorexia nervosa and depression. This review (1) provides background on the current clinical challenges of psychiatric disorders, (2) gives an overview of metabolomics application as a tool to develop improved biomarkers for precision psychiatry, and (3) summarizes current knowledge on metabolomics and lipidomic findings in common psychiatric disorders, with a focus on eicosanoids. Metabolomics is a promising tool for precision psychiatry. This research has great potential for both discovering biomarkers and elucidating molecular mechanisms underlying psychiatric disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wakefield JC (2007) The concept of mental disorder: diagnostic implications of the harmful dysfunction analysis. World Psychiat 6(3):149–156

    Google Scholar 

  2. Kessler RC, Wang PS (2008) The descriptive epidemiology of commonly occurring mental disorders in the United States. Annu Rev Public Health 29:115–129

    Article  PubMed  Google Scholar 

  3. Bruffaerts R, Vilagut G, Demyttenaere K, Alonso J, Alhamzawi A, Andrade LH et al (2012) Role of common mental and physical disorders in partial disability around the world. Br J Psychiat 200(6):454–461

    Article  Google Scholar 

  4. Walker ER, McGee RE, Druss BG (2015) Mortality in mental disorders and global disease burden implications: a systematic review and meta-analysis. JAMA Psychiat 72(4):334–341

    Article  Google Scholar 

  5. Vigo D, Thornicroft G, Atun R (2016) Estimating the true global burden of mental illness. Lancet Psychiatry 3(2):171–178

    Article  PubMed  Google Scholar 

  6. Ormel J, Von Korff M, Burger H, Scott K, Demyttenaere K, Huang YQ et al (2007) Mental disorders among persons with heart disease – results from World Mental Health surveys. Gen Hosp Psychiatry 29(4):325–334

    Article  PubMed  PubMed Central  Google Scholar 

  7. Goldberg DP, Prisciandaro JJ, Williams P (2012) The primary health care version of ICD-11: the detection of common mental disorders in general medical settings. Gen Hosp Psychiatry 34(6):665–670

    Article  PubMed  Google Scholar 

  8. American Psychiatric Association (ed) (2013) American psychiatric association, diagnostic and statistical manual of mental disorders, 5th edn. Washington, DC

    Google Scholar 

  9. Kessler RC (2007) Psychiatric epidemiology: challenges and opportunities. Int Rev Psychiatry 19(5):509–521

    Article  PubMed  PubMed Central  Google Scholar 

  10. Clark LA, Cuthbert B, Lewis-Fernandez R, Narrow WE, Reed GM (2017) Three approaches to understanding and classifying mental disorder: ICD-11, DSM-5, and the National Institute of Mental Health’s Research Domain Criteria (RDoC). Psychol Sci Public Interest 18(2):72–145

    Article  PubMed  Google Scholar 

  11. Howland RH (2008) Sequenced treatment alternatives to relieve depression (STAR∗D). Part 2: study outcomes. J Psychosoc Nurs Ment Health Serv 46(10):21–24

    Article  PubMed  Google Scholar 

  12. National research council committee on a framework for developing a new taxonomy of disease (2011) National Academies Press, Washington, DC

    Google Scholar 

  13. Collins FS, Varmus H (2015) A new initiative on precision medicine. N Engl J Med 372(9):793–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hasin Y, Seldin M, Lusis A (2017) Multi-omics approaches to disease. Genome Biol 18(1):83

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Wray NR, Ripke S, Mattheisen M, Trzaskowski M, Byrne EM, Abdellaoui A et al (2018) Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat Genet 50(5):668–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schizophrenia Working Group of the Psychiatric Genomics Consortium (2014) Biological insights from 108 schizophrenia-associated genetic loci. Nature 511(7510):421–427

    Article  PubMed Central  CAS  Google Scholar 

  17. Cross-Disorder Group of the Psychiatric Genomics C, Lee SH, Ripke S, Neale BM, Faraone SV, Purcell SM et al (2013) Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat Genet 45(9):984–994

    Article  CAS  Google Scholar 

  18. Ward ET, Kostick KM, Lazaro-Munoz G (2019) Integrating genomics into psychiatric practice: ethical and legal challenges for clinicians. Harv Rev Psychiatry 27(1):53–64

    Article  PubMed  PubMed Central  Google Scholar 

  19. Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA et al (2017) 10 years of GWAS discovery: biology, function, and translation. Am J Hum Genet 101(1):5–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sun YV, Hu YJ (2016) Integrative analysis of multi-omics data for discovery and functional studies of complex human diseases. Adv Genet 93:147–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Brainstorm C, Anttila V, Bulik-Sullivan B, Finucane HK, Walters RK, Bras J et al (2018) Analysis of shared heritability in common disorders of the brain. Science 360(6395)

    Google Scholar 

  22. Schwarz E, Guest PC, Rahmoune H, Harris LW, Wang L, Leweke FM et al (2012) Identification of a biological signature for schizophrenia in serum. Mol Psychiatry 17(5):494–502

    Article  CAS  PubMed  Google Scholar 

  23. Biomarkers Definitions Working G (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69(3):89–95

    Article  Google Scholar 

  24. Dalvie S, Koen N, McGregor N, O’Connell K, Warnich L, Ramesar R et al (2016) Toward a global roadmap for precision medicine in psychiatry: challenges and opportunities. OMICS 20(10):557–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Beger RD, Dunn W, Schmidt MA, Gross SS, Kirwan JA, Cascante M et al (2016) Metabolomics enables precision medicine: “a white paper, community perspective”. Metabolomics 12(10):149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Shih PB (2017) Integrating multi-omics biomarkers and postprandial metabolism to develop personalized treatment for anorexia nervosa. Prostaglandins Other Lipid Mediat 132:69–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gowda GA, Djukovic D (2014) Overview of mass spectrometry-based metabolomics: opportunities and challenges. Methods Mol Biol 1198:3–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Markley JL, Bruschweiler R, Edison AS, Eghbalnia HR, Powers R, Raftery D et al (2017) The future of NMR-based metabolomics. Curr Opin Biotechnol 43:34–40

    Article  CAS  PubMed  Google Scholar 

  29. Grebe SK, Singh RJ (2011) LC-MS/MS in the clinical laboratory – where to from here? Clinical Biochem Rev 32(1):5–31

    Google Scholar 

  30. Johnson CH, Ivanisevic J, Siuzdak G (2016) Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol 17(7):451–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hennebelle M, Otoki Y, Yang J, Hammock BD, Levitt AJ, Taha AY et al (2017) Altered soluble epoxide hydrolase-derived oxylipins in patients with seasonal major depression: an exploratory study. Psychiatry Res 252:94–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tasic L, Pontes JGM, Carvalho MS, Cruz G, Dal Mas C, Sethi S et al (2017) Metabolomics and lipidomics analyses by (1)H nuclear magnetic resonance of schizophrenia patient serum reveal potential peripheral biomarkers for diagnosis. Schizophr Res 185:182–189

    Article  PubMed  Google Scholar 

  33. Meltzer HY, Rajagopal L, Huang M, Oyamada Y, Kwon S, Horiguchi M (2013) Translating the N-methyl-D-aspartate receptor antagonist model of schizophrenia to treatments for cognitive impairment in schizophrenia. Int J Neuropsychopharmacol 16(10):2181–2194

    Article  CAS  PubMed  Google Scholar 

  34. Yang J, Chen T, Sun L, Zhao Z, Qi X, Zhou K et al (2013) Potential metabolite markers of schizophrenia. Mol Psychiatry 18(1):67–78

    Article  CAS  PubMed  Google Scholar 

  35. Holmes E, Tsang TM, Huang JT, Leweke FM, Koethe D, Gerth CW et al (2006) Metabolic profiling of CSF: evidence that early intervention may impact on disease progression and outcome in schizophrenia. PLoS Med 3(8):e327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Jin H, Shih P-aB, Golshan S, Mudaliar S, Henry R, Glorioso DK et al (2013) Comparison of longer-term safety and effectiveness of 4 atypical antipsychotics in patients over age 40: a trial using equipoise-stratified randomization. J Clin Psychiatry 74(1):11–19

    Article  CAS  Google Scholar 

  37. McEvoy J, Baillie RA, Zhu H, Buckley P, Keshavan MS, Nasrallah HA et al (2013) Lipidomics reveals early metabolic changes in subjects with schizophrenia: effects of atypical antipsychotics. PLoS One 8(7):e68717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Suvitaival T, Mantere O, Kieseppa T, Mattila I, Poho P, Hyotylainen T et al (2016) Serum metabolite profile associates with the development of metabolic co-morbidities in first-episode psychosis. Transl Psychiatry 6(11):e951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Xuan J, Pan G, Qiu Y, Yang L, Su M, Liu Y et al (2011) Metabolomic profiling to identify potential serum biomarkers for schizophrenia and risperidone action. J Proteome Res 10(12):5433–5443

    Article  PubMed  CAS  Google Scholar 

  40. Zheng P, Fang Z, Xu XJ, Liu ML, Du X, Zhang X et al (2016) Metabolite signature for diagnosing major depressive disorder in peripheral blood mononuclear cells. J Affect Disord 195:75–81

    Article  CAS  PubMed  Google Scholar 

  41. Chen JJ, Zhou CJ, Zheng P, Cheng K, Wang HY, Li J et al (2017) Differential urinary metabolites related with the severity of major depressive disorder. Behav Brain Res 332:280–287

    Article  CAS  PubMed  Google Scholar 

  42. Paige LA, Mitchell MW, Krishnan KR, Kaddurah-Daouk R, Steffens DC (2007) A preliminary metabolomic analysis of older adults with and without depression. Int J Geriatr Psychiatry 22(5):418–423

    Article  PubMed  Google Scholar 

  43. Steffens DC, Wei J, Krishnan KR, Karoly ED, Mitchell MW, O’Connor CM et al (2010) Metabolomic differences in heart failure patients with and without major depression. J Geriatr Psychiatry Neurol 23(2):138–146

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zhu H, Bogdanov MB, Boyle SH, Matson W, Sharma S, Matson S et al (2013) Pharmacometabolomics of response to sertraline and to placebo in major depressive disorder – possible role for methoxyindole pathway. PLoS One 8(7):e68283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gupta M, Neavin D, Liu D, Biernacka J, Hall-Flavin D, Bobo WV et al (2016) TSPAN5, ERICH3 and selective serotonin reuptake inhibitors in major depressive disorder: pharmacometabolomics-informed pharmacogenomics. Mol Psychiatry 21(12):1717–1725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Czysz AH, South C, Gadad BS, Arning E, Soyombo A, Bottiglieri T et al (2019) Can targeted metabolomics predict depression recovery? Results from the CO-MED trial. Transl Psychiatry 9(1):11

    Article  PubMed  PubMed Central  Google Scholar 

  47. Sethi S, Pedrini M, Rizzo LB, Zeni-Graiff M, Mas CD, Cassinelli AC et al (2017) (1)H-NMR, (1)H-NMR T2-edited, and 2D-NMR in bipolar disorder metabolic profiling. Int J Bipolar Disord 5(1):23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Chen JJ, Liu Z, Fan SH, Yang DY, Zheng P, Shao WH et al (2014) Combined application of NMR- and GC-MS-based metabonomics yields a superior urinary biomarker panel for bipolar disorder. Sci Rep 4:5855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ribeiro HC, Klassen A, Pedrini M, Carvalho MS, Rizzo LB, Noto MN et al (2017) A preliminary study of bipolar disorder type I by mass spectrometry-based serum lipidomics. Psychiatry Res 258:268–273

    Article  PubMed  Google Scholar 

  50. Young SN (1991) The 1989 Borden Award Lecture. Some effects of dietary components (amino acids, carbohydrate, folic acid) on brain serotonin synthesis, mood, and behavior. Can J Physiol Pharmacol 69(7):893–903

    Article  CAS  PubMed  Google Scholar 

  51. Conklin SM, Gianaros PJ, Brown SM, Yao JK, Hariri AR, Manuck SB et al (2007) Long-chain omega-3 fatty acid intake is associated positively with corticolimbic gray matter volume in healthy adults. Neurosci Lett 421(3):209–212

    Article  CAS  PubMed  Google Scholar 

  52. Pottala JV, Yaffe K, Robinson JG, Espeland MA, Wallace R, Harris WS (2014) Higher RBC EPA + DHA corresponds with larger total brain and hippocampal volumes: WHIMS-MRI study. Neurology 82(5):435–442

    Article  PubMed  PubMed Central  Google Scholar 

  53. Messamore E, Almeida DM, Jandacek RJ, McNamara RK (2017) Polyunsaturated fatty acids and recurrent mood disorders: phenomenology, mechanisms, and clinical application. Prog Lipid Res 66:1–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Grosso G, Pajak A, Marventano S, Castellano S, Galvano F, Bucolo C et al (2014) Role of omega-3 fatty acids in the treatment of depressive disorders: a comprehensive meta-analysis of randomized clinical trials. PLoS One 9(5):e96905

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Young JJ, Bruno D, Pomara N (2014) A review of the relationship between proinflammatory cytokines and major depressive disorder. J Affect Disord 169:15–20

    Article  CAS  PubMed  Google Scholar 

  56. Tanaka T, Matsuda T, Hayes LN, Yang S, Rodriguez K, Severance EG et al (2017) Infection and inflammation in schizophrenia and bipolar disorder. Neurosci Res 115:59–63

    Article  CAS  PubMed  Google Scholar 

  57. Valdes AM, Ravipati S, Pousinis P, Menni C, Mangino M, Abhishek A et al (2018) Omega-6 oxylipins generated by soluble epoxide hydrolase are associated with knee osteoarthritis. J Lipid Res 59(9):1763–1770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Serhan CN, Chiang N, Van Dyke TE (2008) Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat Rev Immunol 8(5):349–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Spector AA, Kim HY (2015) Cytochrome P450 epoxygenase pathway of polyunsaturated fatty acid metabolism. Biochim Biophys Acta 1851(4):356–365

    Article  CAS  PubMed  Google Scholar 

  60. Imig JD (2015) Epoxyeicosatrienoic acids, hypertension, and kidney injury. Hypertension 65(3):476–482

    Article  CAS  PubMed  Google Scholar 

  61. Li N, Liu JY, Timofeyev V, Qiu H, Hwang SH, Tuteja D et al (2009) Beneficial effects of soluble epoxide hydrolase inhibitors in myocardial infarction model: insight gained using metabolomic approaches. J Mol Cell Cardiol 47(6):835–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Panigrahy D, Kaipainen A, Greene ER, Huang S (2010) Cytochrome P450-derived eicosanoids: the neglected pathway in cancer. Cancer Metastasis Rev 29(4):723–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Shih PB, Yang J, Morisseau C, German JB, Zeeland AA, Armando AM et al (2016) Dysregulation of soluble epoxide hydrolase and lipidomic profiles in anorexia nervosa. Mol Psychiatry 21(4):537–546

    Article  CAS  PubMed  Google Scholar 

  64. Wang D, Sun X, Yan J, Ren B, Cao B, Lu Q et al (2018) Alterations of eicosanoids and related mediators in patients with schizophrenia. J Psychiatr Res 102:168–178

    Article  PubMed  Google Scholar 

  65. Zulyniak MA, Perreault M, Gerling C, Spriet LL, Mutch DM (2013) Fish oil supplementation alters circulating eicosanoid concentrations in young healthy men. Metabolism 62(8):1107–1113

    Article  CAS  PubMed  Google Scholar 

  66. Zivkovic AM, Telis N, German JB, Hammock BD (2011) Dietary omega-3 fatty acids aid in the modulation of inflammation and metabolic health. Calif Agric (Berkeley) 65(3):106–111

    Article  Google Scholar 

  67. Thomas J, Thomas CJ, Radcliffe J, Itsiopoulos C (2015) Omega-3 fatty acids in early prevention of inflammatory neurodegenerative disease: a focus on Alzheimer’s disease. Biomed Res Int 2015:172801

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Sears B, Ricordi C (2012) Role of fatty acids and polyphenols in inflammatory gene transcription and their impact on obesity, metabolic syndrome and diabetes. Eur Rev Med Pharmacol Sci 16(9):1137–1154

    CAS  PubMed  Google Scholar 

  69. Lee HC, Yokomizo T (2018) Applications of mass spectrometry-based targeted and non-targeted lipidomics. Biochem Biophys Res Commun 504(3):576–581

    Article  CAS  PubMed  Google Scholar 

  70. Quehenberger O, Armando AM, Brown AH, Milne SB, Myers DS, Merrill AH et al (2010) Lipidomics reveals a remarkable diversity of lipids in human plasma. J Lipid Res 51(11):3299–3305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Veselinovic M, Vasiljevic D, Vucic V, Arsic A, Petrovic S, Tomic-Lucic A et al (2017) Clinical benefits of n-3 PUFA and -linolenic acid in patients with rheumatoid arthritis. Nutrients 9(4)

    Article  PubMed Central  CAS  Google Scholar 

  72. Magee P, Pearson S, Allen J (2008) The omega-3 fatty acid, eicosapentaenoic acid (EPA), prevents the damaging effects of tumour necrosis factor (TNF)-alpha during murine skeletal muscle cell differentiation. Lipids Health Dis 7:24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Orr SK, Trepanier MO, Bazinet RP (2013) n-3 Polyunsaturated fatty acids in animal models with neuroinflammation. Prostaglandins Leukot Essent Fatty Acids 88(1):97–103

    Article  CAS  PubMed  Google Scholar 

  74. Alam R, Abdolmaleky HM, Zhou JR (2017) Microbiome, inflammation, epigenetic alterations, and mental diseases. Am J Med Genet B Neuropsychiatr Genet 174(6):651–660

    Article  CAS  PubMed  Google Scholar 

  75. Das UN (2013) Autism as a disorder of deficiency of brain-derived neurotrophic factor and altered metabolism of polyunsaturated fatty acids. Nutrition 29(10):1175–1185

    Article  CAS  PubMed  Google Scholar 

  76. Das UN (2013) Polyunsaturated fatty acids and their metabolites in the pathobiology of schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry 42:122–134

    Article  CAS  Google Scholar 

  77. Chiu CC, Huang SY, Su KP, Lu ML, Huang MC, Chen CC et al (2003) Polyunsaturated fatty acid deficit in patients with bipolar mania. Eur Neuropsychopharmacol 13(2):99–103

    Article  CAS  PubMed  Google Scholar 

  78. Pomponi M, Janiri L, La Torre G, Di Stasio E, Di Nicola M, Mazza M et al (2013) Plasma levels of n-3 fatty acids in bipolar patients: deficit restricted to DHA. J Psychiatr Res 47(3):337–342

    Article  PubMed  Google Scholar 

  79. Scola G, Versace A, Metherel AH, Monsalve-Castro LA, Phillips ML, Bazinet RP et al (2018) Alterations in peripheral fatty acid composition in bipolar and unipolar depression. J Affect Disord 233:86–91

    Article  CAS  PubMed  Google Scholar 

  80. Sublette ME, Hibbeln JR, Galfalvy H, Oquendo MA, Mann JJ (2006) Omega-3 polyunsaturated essential fatty acid status as a predictor of future suicide risk. Am J Psychiatry 163(6):1100–1102

    Article  PubMed  Google Scholar 

  81. Ciappolino V, Delvecchio G, Agostoni C, Mazzocchi A, Altamura AC, Brambilla P (2017) The role of n-3 polyunsaturated fatty acids (n-3PUFAs) in affective disorders. J Affect Disord 224:32–47

    Article  CAS  PubMed  Google Scholar 

  82. Sarris J, Murphy J, Mischoulon D, Papakostas GI, Fava M, Berk M et al (2016) Adjunctive nutraceuticals for depression: a systematic review and meta-analyses. Am J Psychiatry 173(6):575–587

    Article  PubMed  Google Scholar 

  83. Owen MJ, O’Donovan MC, Thapar A, Craddock N (2011) Neurodevelopmental hypothesis of schizophrenia. Br J Psychiatry 198(3):173–175

    Article  PubMed  PubMed Central  Google Scholar 

  84. Khan MM, Evans DR, Gunna V, Scheffer RE, Parikh VV, Mahadik SP (2002) Reduced erythrocyte membrane essential fatty acids and increased lipid peroxides in schizophrenia at the never-medicated first-episode of psychosis and after years of treatment with antipsychotics. Schizophr Res 58(1):1–10

    Article  PubMed  Google Scholar 

  85. Assies J, Lieverse R, Vreken P, Wanders RJ, Dingemans PM, Linszen DH (2001) Significantly reduced docosahexaenoic and docosapentaenoic acid concentrations in erythrocyte membranes from schizophrenic patients compared with a carefully matched control group. Biol Psychiatry 49(6):510–522

    Article  CAS  PubMed  Google Scholar 

  86. Pawelczyk T, Trafalska E, Kotlicka-Antczak M, Pawelczyk A (2016) The association between polyunsaturated fatty acid consumption and the transition to psychosis in ultra-high risk individuals. Prostaglandins Leukot Essent Fatty Acids 108:30–37

    Article  CAS  PubMed  Google Scholar 

  87. Shih PB, Morisseau C, Le T, Woodside B, German JB (2017) Personalized polyunsaturated fatty acids as a potential adjunctive treatment for anorexia nervosa. Prostaglandins Other Lipid Mediat 133:11–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Satogami K, Tseng PT, Su KP, Takahashi S, Ukai S, Li DJ et al (2019) Relationship between polyunsaturated fatty acid and eating disorders: systematic review and meta-analysis. Prostaglandins Leukot Essent Fatty Acids 142:11–19

    Article  CAS  PubMed  Google Scholar 

  89. Song C (2013) Essential fatty acids as potential anti-inflammatory agents in the treatment of affective disorders. Mod Trends Pharmacopsychiatry 28:75–89

    Article  CAS  PubMed  Google Scholar 

  90. Moffett JR, Arun P, Ariyannur PS, Namboodiri AM (2013) N-Acetylaspartate reductions in brain injury: impact on post-injury neuroenergetics, lipid synthesis, and protein acetylation. Front Neuroenerg 5:11

    Article  CAS  Google Scholar 

  91. Manson JE, Cook NR, Lee IM, Christen W, Bassuk SS, Mora S et al (2019) Marine n-3 fatty acids and prevention of cardiovascular disease and cancer. N Eng J Med 380(1):23–32

    Article  CAS  PubMed  Google Scholar 

  92. Group ASC, Bowman L, Mafham M, Wallendszus K, Stevens W, Buck G et al (2018) Effects of n-3 fatty acid supplements in diabetes mellitus. N Engl J Med 379(16):1540–1550

    Article  Google Scholar 

  93. Yang J, Schmelzer K, Georgi K, Hammock BD (2009) Quantitative profiling method for oxylipin metabolome by liquid chromatography electrospray ionization tandem mass spectrometry. Anal Chem 81(19):8085–8093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Astarita G, Kendall AC, Dennis EA, Nicolaou A (2015) Targeted lipidomic strategies for oxygenated metabolites of polyunsaturated fatty acids. Biochim Biophys Acta 1851(4):456–468

    Article  CAS  PubMed  Google Scholar 

  95. Chiurchiu V, Leuti A, Maccarrone M (2018) Bioactive lipids and chronic inflammation: managing the fire within. Front Immunol 9:38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Lammermann T, Afonso PV, Angermann BR, Wang JM, Kastenmuller W, Parent CA et al (2013) Neutrophil swarms require LTB4 and integrins at sites of cell death in vivo. Nature 498(7454):371–375

    Article  PubMed  CAS  Google Scholar 

  97. Buczynski MW, Dumlao DS, Dennis EA (2009) Thematic review series: proteomics. An integrated omics analysis of eicosanoid biology. J Lipid Res 50(6):1015–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Latha KS (2010) The noncompliant patient in psychiatry: the case for and against covert/surreptitious medication. Mens Sana Monogr 8(1):96–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Shih PB, Yang J, Morisseau C, Calarge C (2017) American College of Neuropsychopharmacology annual meeting. Palm Springs, CA

    Google Scholar 

  100. Morisseau C, Hammock BD (2013) Impact of soluble epoxide hydrolase and epoxyeicosanoids on human health. Annu Rev Pharmacol Toxicol 53:37–58

    Article  CAS  PubMed  Google Scholar 

  101. Zeeland AAS-V, Bloss CS, Tewhey R, Bansal V, Torkamani A, Libiger O et al (2014) Evidence for the role of EPHX2 gene variants in anorexia nervosa. Mol Psychiatry 19(6):724–732

    Article  CAS  Google Scholar 

  102. Ren Q, Ma M, Ishima T, Morisseau C, Yang J, Wagner KM et al (2016) Gene deficiency and pharmacological inhibition of soluble epoxide hydrolase confers resilience to repeated social defeat stress. Proc Natl Acad Sci U S A 113(13):E1944–E1952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ma M, Ren Q, Fujita Y, Ishima T, Zhang JC, Hashimoto K (2013) Effects of AS2586114, a soluble epoxide hydrolase inhibitor, on hyperlocomotion and prepulse inhibition deficits in mice after administration of phencyclidine. Pharmacol Biochem Behav 110:98–103

    Article  CAS  PubMed  Google Scholar 

  104. Mathe AA, Sedvall G, Wiesel FA, Nyback H (1980) Increased content of immunoreactive prostaglandin E in cerebrospinal fluid of patients with schizophrenia. Lancet 1(8158):16–18

    Article  CAS  PubMed  Google Scholar 

  105. Kaiya H, Uematsu M, Ofuji M, Nishida A, Takeuchi K, Nozaki M et al (1989) Elevated plasma prostaglandin E2 levels in schizophrenia. J Neural Transm 77(1):39–46

    Article  CAS  PubMed  Google Scholar 

  106. Nishino S, Ueno R, Ohishi K, Sakai T, Hayaishi O (1989) Salivary prostaglandin concentrations: possible state indicators for major depression. Am J Psychiatry 146(3):365–368

    Article  CAS  PubMed  Google Scholar 

  107. Ohishi K, Ueno R, Nishino S, Sakai T, Hayaishi O (1988) Increased level of salivary prostaglandins in patients with major depression. Biol Psychiatry 23(4):326–334

    Article  CAS  PubMed  Google Scholar 

  108. Calabrese JR, Skwerer RG, Barna B, Gulledge AD, Valenzuela R, Butkus A et al (1986) Depression, immunocompetence, and prostaglandins of the E series. Psychiatry Res 17(1):41–47

    Article  CAS  PubMed  Google Scholar 

  109. Lieb J, Karmali R, Horrobin D (1983) Elevated levels of prostaglandin E2 and thromboxane B2 in depression. Prostaglandins Leukot Med 10(4):361–367

    Article  CAS  PubMed  Google Scholar 

  110. Vane JR (2002) Biomedicine. Back to an aspirin a day? Science 296(5567):474–475

    Article  CAS  PubMed  Google Scholar 

  111. Aharony D (1998) Pharmacology of leukotriene receptor antagonists. Am J Respir Crit Care Med 157(6 Pt 2):S214–S218. discussion S8–9, S47–8

    Article  PubMed  Google Scholar 

  112. Muller N, Ulmschneider M, Scheppach C, Schwarz MJ, Ackenheil M, Moller HJ et al (2004) COX-2 inhibition as a treatment approach in schizophrenia: immunological considerations and clinical effects of celecoxib add-on therapy. Eur Arch Psychiatry Clin Neurosci 254(1):14–22

    Article  PubMed  Google Scholar 

  113. Muller N, Krause D, Dehning S, Musil R, Schennach-Wolff R, Obermeier M et al (2010) Celecoxib treatment in an early stage of schizophrenia: results of a randomized, double-blind, placebo-controlled trial of celecoxib augmentation of amisulpride treatment. Schizophr Res 121(1–3):118–124

    Article  PubMed  Google Scholar 

  114. Muller N, Riedel M, Schwarz MJ (2004) Psychotropic effects of COX-2 inhibitors--a possible new approach for the treatment of psychiatric disorders. Pharmacopsychiatry 37(6):266–269

    Article  CAS  PubMed  Google Scholar 

  115. Nery FG, Monkul ES, Hatch JP, Fonseca M, Zunta-Soares GB, Frey BN et al (2008) Celecoxib as an adjunct in the treatment of depressive or mixed episodes of bipolar disorder: a double-blind, randomized, placebo-controlled study. Hum Psychopharmacol 23(2):87–94

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei-an (Betty) Shih .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shih, Pa.(. (2019). Metabolomics Biomarkers for Precision Psychiatry. In: Honn, K., Zeldin, D. (eds) The Role of Bioactive Lipids in Cancer, Inflammation and Related Diseases. Advances in Experimental Medicine and Biology, vol 1161. Springer, Cham. https://doi.org/10.1007/978-3-030-21735-8_10

Download citation

Publish with us

Policies and ethics